Journal of Mathematical Sciences

, Volume 121, Issue 3, pp 2330–2344

Gaussian Limit for Projective Characters of Large Symmetric Groups

  • V. N. Ivanov
Article

DOI: 10.1023/B:JOTH.0000024615.07311.fe

Cite this article as:
Ivanov, V.N. Journal of Mathematical Sciences (2004) 121: 2330. doi:10.1023/B:JOTH.0000024615.07311.fe
  • 36 Downloads

Abstract

In 1993, S. Kerov obtained a central limit theorem for the Plancherel measure on Young diagrams. The Plancherel measure is a natural probability measure on the set of irreducible characters of the symmetric group Sn. Kerov's theorem states that, as n→∞, the values of irreducible characters at simple cycles, appropriately normalized and considered as random variables, are asymptotically independent and converge to Gaussian random variables. In the present work we obtain an analog of this theorem for projective representations of the symmetric group. Bibliography: 27 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • V. N. Ivanov
    • 1
  1. 1.Moscow State UniversityRussia

Personalised recommendations