Advertisement

Journal of Mathematical Sciences

, Volume 121, Issue 2, pp 2156–2177 | Cite as

Lyapunov–Krotov Inequality and Sufficient Conditions in Optimal Control

  • V. A. Dykhta
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. P. Afanas'ev, V. V. Dikusar, A. A. Milyutin, and S. A. Chukanov, Necessary Conditions in Optimal Control [in Russian], Nauka, Moscow (1990).Google Scholar
  2. 2.
    V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979).Google Scholar
  3. 3.
    L. T. Aschepkov and N. I. Baranchikiva, “Maximum principle for positional controls and the synthesis problem for optimal systems,” Prikl. Mat. Mekh., 60,No. 2, 179–188 (1996).Google Scholar
  4. 4.
    J.-P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin (1984).Google Scholar
  5. 5.
    J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston-Basel-Berlin (1990).Google Scholar
  6. 6.
    M. Bardi and I. C. Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Boston (1997).Google Scholar
  7. 7.
    R. Bellman, Dynamic Programming [Russian translation], IL, Moscow (1960).Google Scholar
  8. 8.
    L. Berkovitz, “Optimal feedback controls,” SIAM J. Contr. Optim., 27,No. 5, 991–1007 (1989).Google Scholar
  9. 9.
    V. I. Blagodatskikh and A. F. Filippov, “Differential inclusions and optimal control,” Trudy Mat. Inst. Akad. Nauk SSSR, 169, 195–252 (1985).Google Scholar
  10. 10.
    V. G. Boltyanskii, Mathematical Methods for Optimal Control [in Russian], Nauka, Moscow (1969).Google Scholar
  11. 11.
    A. Bressan and F. Rampazzo, “Impulse control systems without commutativity assumptions,” J. Optim. Theory Appl., 81,No. 3, 435–457 (1994).Google Scholar
  12. 12.
    A. Bressan and F. Rampazzo, “Impulsive control system with commutative vector fields,” J. Optim. Theory Appl., 71,No. 1, 67–83 (1991).Google Scholar
  13. 13.
    P. Cannarsa and H. Frankowska, “Some characterizations of optimal trajectories in control theory,” SIAM J. Contr. Optim., 29,No. 6, 1322–1347 (1989).Google Scholar
  14. 14.
    L. Cecari, Optimization — Theory and Applications, Springer-Verlag (1983).Google Scholar
  15. 15.
    F. Clarke, Optimization and Nonsmooth Analysis [Russian translation], Nauka, Moscow (1988).Google Scholar
  16. 16.
    B. P. Demidovich, Lectures on the Mathematical Stability Theory [in Russian], MGU, Moscow (1998).Google Scholar
  17. 17.
    A. V. Dmitruk, “Quadratic conditions for a local minimum for singular extremals in the general optimal control problem,” Proc. Sympos. Pure Math., 64, 163–198 (1998).Google Scholar
  18. 18.
    A. V. Dmitruk, “On the problem on the necessity of sufficient optimality conditions of Krotov type,” Avtomat. Telemekh., No. 10, 3–17 (1997).Google Scholar
  19. 19.
    V. A. Dykhta, “General scheme for transformations of extremal problems and some of its applications in optimal control,” In: Integro-Differential Equations and Their Applications [in Russian], Irkuts Univ., Irkutsk (1987), pp. 82–91.Google Scholar
  20. 20.
    V. A. Dykhta, “Extension principle in qualitative control theory,” In: Methods for Solving Control Problems on the Basis of the Extension Principle [in Russian] Nauka, Novosibirsk (1990), pp. 5–48.Google Scholar
  21. 21.
    V. A. Dykhta, “Impulse-trajectory extension of degenerate optimal control problems,” IMACS Annals Computing Applied Mathematics, 8 103–109 (1990).Google Scholar
  22. 22.
    V. A. Dykhta, “Impulse-trajectory extension of optimal control problems,” In: Development and Applications of the Lyapunov Function Method [in Russian], Nauka, Novosibirsk (1992), pp. 170–182.Google Scholar
  23. 23.
    V. A. Dykhta, “Local minimum conditions for singular regimes in systems with linear control,” Avtomat. Telemekh., No. 12, 5–10 (1981).Google Scholar
  24. 24.
    V. A. Dykhta, “Variational maximum principle and quadratic optimality conditions for impulse and singular processes,” Sib. Mat. Zh., 35,No. 1, 70–82 (1994).Google Scholar
  25. 25.
    V. A. Dykhta, Variational Maximum Principle and Quadratic Optimality Conditions for Impulse Processes [in Russian], IGEA, Irkutsk (1995).Google Scholar
  26. 26.
    V. A. Dykhta, G. A. Kolokol'nikova, and I. A. Nikiforova, “Nonlocal transformations of optimal control problems and minimum conditions on the set of sequences in problems with singular regimes,” In: Theoretical and Applied Problems of Optimal Control [in Russian], Nauka, Novosibirsk (1985), pp. 59–75.Google Scholar
  27. 27.
    V. A. Dykhta and O. N. Samsonyuk, Optimal Impulse Control with Applications [in Russian], Fizmatlit, Moscow (2000).Google Scholar
  28. 28.
    V. I. Elkin, Reduction of Nonlinear Control Systems: Differential-Geometric Approach [in Russian], Fizmatgiz, Moscow (1997).Google Scholar
  29. 29.
    T. F. Filippova, “Trajectory tubes for impulsive control problems,” In: Proc. of the European Control Conf. 2001 (ECC-2001), Porto, Portugal (2001), pp. 2766–2769.Google Scholar
  30. 30.
    T. F. Filippova, “On the state estimation problem for impulsive differential inclusions with state constraints,” In: Proc. 5th Symposium “Nonlinear Control Systems” (NOLCOS-2001), St. Petersburg, Russia (2001), pp. 1365–1369.Google Scholar
  31. 31.
    W. Fleming and R. Rishel, Optimal Control of Deterministic and Stochastic Systems [Russian translation], Mir, Moscow (1978).Google Scholar
  32. 32.
    I. V. Gaishun, Completely Solvable Multidimensional Differential Equations [in Russian], Nauka i Tekhnika, Minsk (1983).Google Scholar
  33. 33.
    V. I. Gurman, Extension Principle in Optimal Control Problems [in Russian] Nauka, Moscow (1985).Google Scholar
  34. 34.
    V. I. Gurman, V. A. Dykhta, and G. A. Kolokol'nikova, “Nonlocal transformations of degenerate optimal control problems and impulse regimes,” Deposited at VINITI (1990).Google Scholar
  35. 35.
    A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).Google Scholar
  36. 36.
    A. D. Ioffe, “Convex functions connected with variational problems and the problem of absolute minimum,” Mat. Sb., 88,No. 2, 194–210 (1972).Google Scholar
  37. 37.
    E. Kamke, Handbook on First-Order Partial Differential Equations [Russian translation], Nauka, Moscow (1966).Google Scholar
  38. 38.
    V. N. Kolokol'tsev, “Idempotent structures in optimization,” In: Progress in Science and Technology, Series on Contemporary Mathematics and Its Applications, Thematical Surveys [In Russian], Vol. 65, All-Russian Institute for Scientific and Technical Information (VINITI), Russian Akademy of Sciences, Moscow (2000), pp. 118–174.Google Scholar
  39. 39.
    A. M. Krasnosel'skii and A. V. Pokrovskii, Systems with Hysteresis [in Russian], Nauka, Moscow (1983).Google Scholar
  40. 40.
    V. F. Krotov, V. Z. Bukreev, and V. I. Gurman, New Methods for the Calculus of Variations in the Dynamics of Flight [in Russian], Mashinostroenie, Moscow (1969).Google Scholar
  41. 41.
    V. F. Krotov and V. I. Gurman, Methods and Problems of Optimal Control [in Russian], Nauka, Moscow (1973).Google Scholar
  42. 42.
    V. F. Krotov, Global Methods in Optimal Control Theory, Marcel Dekker, New York (1996).Google Scholar
  43. 43.
    V. L. Levin and A. A. Milyutin, “Problem of mass translation with the discontinuous cost function and the mass statement of the duality problem of convex extremal problems,” Usp. Mat. Nauk, 34,No. 3, 3–68 (1979).Google Scholar
  44. 44.
    E. S. Levitin, A. A. Milyutin, and N. P. Osmolovskii, “Higher-order conditions in constrained problems,” Usp. Mat. Nauk, 33,No. 6, 85–147 (1978).Google Scholar
  45. 45.
    V. M. Matrosov, L. Yu. Anapol'skii, and S. N. Vasil'ev, Comparison Method in Mathematical System Theory [in Russian], Nauka, Novosibirsk (1980).Google Scholar
  46. 46.
    A. A. Melikyan, “Singular characteristics of differential equations with first-order partial derivatives in optimal control and differential games,” In: Progress in Science and Technology, Series on Contemporary Mathematics and Its Applications, Thematical Surveys [In Russian], Vol. 64, All-Russian Institute for Scientific and Technical Information (VINITI), Russian Akademy of Sciences, Moscow (2000), pp. 179–197.Google Scholar
  47. 47.
    A. A. Milyutin, “An example of an optimal control problem whose extremals possess a continual set of discontinuities of the control function,” Russian J. Math. Phys., 1,No. 3, 397–402 (1994).Google Scholar
  48. 48.
    A. A. Milyutin, “Calculus of variations and optimal control,” Proc. Internat. Conf. on the Calculus of Variations and Related Topics, Haifa, Chapman and Hall/CRC Research Notes in Mathematics Series, 411 (1999), pp. 159–172.Google Scholar
  49. 49.
    A. A. Milyutin and N. P. Osmolovskii, Calculus of Variations and Optimal Control, Amer. Math. Soc., Providence, Rhode Island (1998).Google Scholar
  50. 50.
    A. A. Milyutin, A. E. Ilyutovich, N. P. Osmolovskii, and S. V. Chukanov, Optimal Control in Linear Systems [in Russian], Nauka, Moscow (1993).Google Scholar
  51. 51.
    A. I. Moskalenko, Methods of Nonlinear Mappings in Optimal Control [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  52. 52.
    M. Motta and F. Rampazzo, “Dynamic programming for nonlinear systems driven by ordinary and impulsive controls,” SIAM J. Contr. Optim., 34,No. 1, 199–225 (1996).Google Scholar
  53. 53.
    Yu. V. Orlov, Theory of Optimal Systems with Relaxed Controls [in Russian], Nauka, Moscow (1988).Google Scholar
  54. 54.
    F. L. Pereira and A. S. Matos, “Hamilton-Jacobi conditions for a measure differential inclusion control problem,” In: Proc. 12th Baikal International Conference “Optimization Methods and Their Applications,” Plenary section, Baikal, Irkutsk (2001), pp. 237–245.Google Scholar
  55. 55.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko, Mathematical Theory of Control Processes [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  56. 56.
    B. N. Pshenichnyi, Necessary Extremality Conditions [in Russian], Nauka, Moscow (1982).Google Scholar
  57. 57.
    N. Rouche, P. Habets, and M. Laloy, Stability Theory by Lyapunov's Direct Method [Russian translation], Mir, Moscow (1980).Google Scholar
  58. 58.
    A. I. Subbotin, “Minimax solutions to differential equations with first-order partial derivatives,” Usp. Mat. Nauk, 51,No. 2, 105–138 (1996).Google Scholar
  59. 59.
    V. V. Velichenko, “On the method of the field of extremals and sufficient conditions for optimality,” Zh. Vych. Mat. Mat. Fiz., 14,No. 1, 45–67 (1974).Google Scholar
  60. 60.
    R. B. Vinter, “Dynamic programming for optimal control problems with terminal constraints,” Lect. Notes Math., 190–202 (1985).Google Scholar
  61. 61.
    R. B. Vinter, Optimal Control, Birkhäuser, Boston-Basel-Berlin (2000).Google Scholar
  62. 62.
    R. B. Vinter, “Weakest conditions for existence of Lipschitz continuous Krotov functions in optimal control theory,” SIAM J. Contr. Optim., 21,No. 2, 215–234 (1983).Google Scholar
  63. 63.
    R. B. Vinter, “A characterization of the reachable set for nonlinear control systems,” SIAM J. Contr. Optim., 18,No. 6, 599–610 (1980).Google Scholar
  64. 64.
    R. B. Vinter and P. Wolenski, “Hamilton-Jacobi theory for optimal control problems with data measurable in time,” SIAM J. Contr. Optim., 28,No. 6, 1404–1419 (1990).Google Scholar
  65. 65.
    R. B. Vinter and R. M. Lewis, “A necessary and sufficient condition for optimality of dynamic programming type, making no a priori assumptions on the controls,” SIAM J. Contr. Optim., 16,No. 4, 571–583 (1978).Google Scholar
  66. 66.
    S. T. Zavalishin and A. N. Sesekin, Impulse Processes: Models and Applications [in Russian], Nauka, Moscow (1991).Google Scholar
  67. 67.
    S. T. Zavalishin and Yu. V. Orlov, “On differential equations containing products of discontinuous functions by distributions,” Differ. Uravn., No. 9, 1614–1615 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • V. A. Dykhta

There are no affiliations available

Personalised recommendations