Journal of Mathematical Sciences

, Volume 120, Issue 4, pp 1630–1641 | Cite as

Pairs of Short Root Subgroups in the Chevalley Group of Type G2

  • V. V. Nesterov
Article

Abstract

The paper is devoted to a description of the pairs of unipotent short root subgroups in the Chevalley group of type G2 over a field of characteristic different from 2. Namely, the subgroups generated by a pair of short root subgroups are described, and the orbits of the Chevalley group, which acts by simultaneous conjugation on such pairs, are classified. Most of the calculations are valid for fields of characteristic 2. Bibliography: 14 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. A. Vavilov, “Geometry of long root subgroups in Chevalley groups,” Vestn. Leningr. Univ., Mat., 21,No. 1, 5–10 (1988).Google Scholar
  2. 2.
    N. A. Vavilov, “Mutual arrangement of long and short root subgroups in a Chevalley group,” Vestn. Leningr. Univ., Mat., 22,No. 1, 1–7 (1989).Google Scholar
  3. 3.
    N. A. Vavilov, “Subgroups of Chevalley groups containing a maximal torus,” Trudy Leningr. Mat. Obshch., 1, 64–109 (1990).Google Scholar
  4. 4.
    A. S. Kondrat'ev, “Subgroups of finite Chevalley groups,” Usp. Mat. Nauk, 41,No. 1, 57–90 (1986).Google Scholar
  5. 5.
    V. V. Nesterov, “Pairs of short root subgroups in a Chevalley group,” Dokl. Ros. Akad. Nauk, 357, 302–305 (1997).Google Scholar
  6. 6.
    V. V. Nesterov, “The arrangement of long and short root subgroups in the Chevalley group of type G 2,” Zap. Nauchn. Semin. POMI, 272, 273–285 (2000).Google Scholar
  7. 7.
    M. Aschbacher and G. M. Seitz, “Involutions in Chevalley groups over fields of even order,” Nagoya Math. J., 63, 1–91 (1976).Google Scholar
  8. 9.
    B. N. Cooperstein, “The geometry of root subgroups in exceptional groups,” Geometria Dedicata, 8,No. 3, 317–381 (1979); II, 15, No. 1, 1–45 (1983).Google Scholar
  9. 10.
    B. N. Cooperstein, “Geometry of long root subgroups in groups of Lie type,” Proc. Symp. Pure Math., 38, 243–248 (1980).Google Scholar
  10. 12.
    J. Hurrelbrink and U. Rehmann, “Eine endliche Präsentation der Gruppe G2(ℤ),” Math. Z., 141, 243–251 (1975).Google Scholar
  11. 13.
    W. M. Kantor, “Subgroups of classical groups generated by long root elements,” Trans. Amer. Math. Soc., 248,No. 2, 347–379 (1979).Google Scholar
  12. 14.
    W. M. Kantor, “Generation of linear groups,” in: The Geometric Vein: Coxeter Festschift, Springer-Verlag, Berlin (1981), pp. 497–509.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • V. V. Nesterov
    • 1
  1. 1.The Baltic State Technical UniversitySt.Petersburg

Personalised recommendations