Journal of Mathematical Sciences

, Volume 120, Issue 1, pp 964–973

A Stochastic Approximation Algorithm with Step-Size Adaptation

  • A. Plakhov
  • P. Cruz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Stat., 22, 400–407 (1951).Google Scholar
  2. 2.
    M. Nevel'son and R. Has'minskii, Stochastic Approximation and Recursive Estimation, Trans. Math. Monogr., 47, Providence, Rhode Island (1976).Google Scholar
  3. 3.
    Y. Fang and T. J. Sejnowski, “Faster learning for dynamic recurrent backpropagation,” Neural Comput., 2, 270–273 (1990).Google Scholar
  4. 4.
    C. Darken and J. Moody, “Towards faster stochastic gradient search,” In: Advances in Neural Information Processing Systems-4 (J. E. Moody, S. J. Hanson, and R. P. Lipmann, Eds.) (1992).Google Scholar
  5. 5.
    L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov, “Parameter adaptation in stochastic optimization,” In: Online Learning in Neural Networks (D. Saad, Ed.) (1998), pp. 111–134.Google Scholar
  6. 6.
    P. J. Verbos, “Neurocontrol and supervised learning: An overview and evaluation,” In: Handbook of Intelligent Control. Neural, Fuzzy, and Adaptive Approaches (D. A. White and D. A. Sofge, Eds.), Van Nostrand, New York (1992), pp. 65–89.Google Scholar
  7. 7.
    H. Kesten, “Accelerated stochastic approximation,” Ann. Math. Stat., 29, 41–59 (1958).Google Scholar
  8. 8.
    B. Delyon and A. Juditsky, “Accelerated stochastic approximation,” SIAM J. Optim., 3, 868–881 (1993).Google Scholar
  9. 9.
    A. Plakhov and L. B. Almeida, Modified Kesten Algorithm, Preprint (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. Plakhov
  • P. Cruz

There are no affiliations available

Personalised recommendations