Advertisement

Journal of Mathematical Sciences

, Volume 119, Issue 6, pp 691–718 | Cite as

Differential Equations on Networks (Geometric Graphs)

  • Yu. V. Pokornyi
  • A. V. Borovskikh
Article

Keywords

Differential Equation Geometric Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    O. M. Penkin, Yu. V. Pokornyi, and E. N. Provotorova, “On one vector boundary-value problem,” in: Boundary-Value Problems [in Russian], Perm (1983), pp. 64–70.Google Scholar
  2. 2.
    Yu. V. Pokornyi and O. M. Penkin, “Sturm theorem for equations on graphs,” Dokl. Akad. Nauk SSSR, 309,No. 6, 1306–1308 (1989).Google Scholar
  3. 3.
    F. Ali Mehmeti and V. Regnier, “Splitting of the energy of dispersive waves in a star-shaped network,” Preprint LMACS 99.7, University of Valenciennes (1999).Google Scholar
  4. 4.
    J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt, “Control of planar networks of Timoshenko beams,” SIAM J. Control Optim., 31, 780–811 (1993).Google Scholar
  5. 5.
    A. V. Borovskikh, R. Mustafokulov, K. P. Lazarev, and Yu. V. Pokornyi, “On one class of fourth-order differential equations on a spatial network,” Dokl. Rossiisk. Akad. Nauk, 345,No. 6, 730–732 (1995).Google Scholar
  6. 6.
    S. Nicaise, “Some results on spectral theory over networks, applied to nerve impulse transmission,” in: Lect. Notes Math., Vol. 1771, Springer (1985), pp. 532–541.Google Scholar
  7. 7.
    Yu. V. Pokornyi, V. L. Pryadiev, A. V. Borovskikh, and A. N. Pokrovsky, “The problem of intracellular and extracellular potentials of dendritic trees,” in: Proc. 1st Intl. Symp. “Electrical Activity of the Brain: Mathematical Models and Analytical Methods,” Pushchino (1997).Google Scholar
  8. 8.
    Yu. V. Pokornyi, “On quasidifferential equations generated by a continuous Chebyshev system,” Dokl. Rossiisk. Akad. Nauk, 345,No. 2, 171–174 (1995).Google Scholar
  9. 9.
    G. Lumer, “Connecting of local operators and evolution equations on a network,” in: Lect. Notes Math., Vol. 787, Springer, Berlin (1980), pp. 219–234.Google Scholar
  10. 10.
    S. Nicaise, “Diffusion sur les espaces ramifiés,” Thesis, Université de Mons (1986).Google Scholar
  11. 11.
    S. Nicaise, “Approche spectrale des problèmes de diffusion sur les reseaux,” in: Lect. Notes Math., Vol. 1235, Springer (1987), pp. 120–140.Google Scholar
  12. 12.
    J. von Below, “Classical solvability of linear parabolic equations on networks,” J. Diff. Equat., 72, 316–337 (1988).Google Scholar
  13. 13.
    B. Gaveau, M. Okada, and T. Okada, “Explicit heat kernels on graphs and spectral analysis: Several complex variables,” Princeton Univ. Press. Math. Notes, 38, 360–384 (1993).Google Scholar
  14. 14.
    J. von Below, “Parabolic network equations,” Habilitation thesis, Eberhard-Karls-Universität Tübingen (1993).Google Scholar
  15. 15.
    J. von Below and S. Nicaise, “Dynamical interface transition in ramified media with diffusion,” Commun. Part. Diff. Equat., 21, 255–279 (1996).Google Scholar
  16. 16.
    M. I. Kamenskii, O. M. Penkin, and Yu. V. Pokornyi, “On the semigroup of the diffusion problem on a spatial network,” Dokl. Rossiisk. Akad. Nauk, 368,No. 2, 157–159 (1999).Google Scholar
  17. 17.
    J. von Below, “A characteristic equation associated to an eigenvalue problem on c -net,” Linear Alg. Appl., 71, 309–325 (1985).Google Scholar
  18. 18.
    S. Nicaise, “Estimées du spectre du laplasien sur un réseau topologique fini,” C. R. Acad. Sci. Paris, Ser. 1, 303,No. 8, 343–346 (1986).Google Scholar
  19. 19.
    Yu. V. Pokornyi, “On the spectrum of certain problems on graphs,” Usp. Mat. Nauk, 42,No. 4, 128–129 (1987).Google Scholar
  20. 20.
    J. von Below, “Sturm-Liouville eigenvalue problems on networks,” Math. Meth. Appl. Sc., 10, 383–395 (1988).Google Scholar
  21. 21.
    M. G. Zagorodnii and Yu. V. Pokornyi, “On the spectrum of second-order boundary-value problems on spatial networks,” Usp. Mat. Nauk, 44,No. 4, 220–221 (1989).Google Scholar
  22. 22.
    B. Dekoninck and S. Nicaise, “Spectre des réseaux de poutres,” C. R. Acad. Sci. Paris, Ser. 1, 326, 1249–1254 (1998).Google Scholar
  23. 23.
    B. Dekoninck and S. Nicaise, “The eigenvalue problem for networks of beams,” in: Generalized Functions, Operator Theory, and Dynamical Systems, Chapman and Hall Research in Math. (1999), pp. 335–344.Google Scholar
  24. 24.
    Yu. V. Pokornyi, V. L. Pryadiev, and A. Al'-Obeid, “On the oscillation properties of the spectrum of a boundary-value problem on a graph,” Mat. Zametki, 60,No. 3, 468–469 (1996).Google Scholar
  25. 25.
    E. J. P. G. Schmidt, “On the modelling and exact controlability of networks of vibrating strings,” SIAM J. Control Optim., 30, 229–245 (1992).Google Scholar
  26. 26.
    J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt, Modelling, Analysis, and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston (1994).Google Scholar
  27. 27.
    J. E. Lagnese, “Modelling and controllability of plate-beam systems,” J. Math. Systems, Estimation, and Control, 5, 141–187 (1995).Google Scholar
  28. 28.
    B. Dekoninck and S. Nicaise, “Control of network of Euler-Bernoulli beams,” ESAIM-COCV, 4, 57–82 (1999).Google Scholar
  29. 29.
    V. A. Il'in and V. V. Tikhomirov, “Wave equation with boundary control on two ends and the problem of complete attenuation of the vibratory process,” Diff. Uravn., 35,No. 5, 692–704 (1999).Google Scholar
  30. 30.
    V. A. Il'in, “Wave equation with boundary control on two ends for an arbitrary period of time,” Diff. Uravn., 35,No. 11, 1517–1534 (1999).Google Scholar
  31. 31.
    V. A. Il'in, “Wave equation with boundary control on one end and a fixed second end,” Diff. Uravn., 35,No. 12, 1640–1659 (1999).Google Scholar
  32. 32.
    V. A. Il'in, “Boundary control of the vibration process on two ends in terms of a generalized solution of the wave equation with finite energy,” Diff. Uravn., 36,No. 11, 1513–1528 (2000).Google Scholar
  33. 33.
    V. A. Il'in, “Boundary control of the vibration process of a string on two ends with the condition of finite energy,” Dokl. Rossiisk. Akad. Nauk, 376,No. 3, 295–299 (2001).Google Scholar
  34. 34.
    B. S. Pavlov and M. D. Faddeev, “Model of free electrons and the scattering problem,” Teor. Mat. Fiz., 55,No. 2, 257–269 (1983).Google Scholar
  35. 35.
    N. I. Gerasimenko and B. S. Pavlov, “The scattering problem on noncompact graphs,” Teor. Mat. Fiz., 74,No. 3, 345–359 (1988).Google Scholar
  36. 36.
    S. P. Novikov, “Discrete Schrödinger operator,” Trudy Mat. Inst. im. V. A. Steklova, 224, 275–290 (1999).Google Scholar
  37. 37.
    S. P. Novikov, “Schrödinger equation and symplectic geometry,” Stud. Chteniya MK NMU, 210–217 (2000).Google Scholar
  38. 38.
    J.-P. Roth, “Spectre du laplacien sur un graphe,” C. R. Acad. Sci. Paris, 296, 783–795 (1983).Google Scholar
  39. 39.
    J.-P. Roth, “Le spectre du laplacien sur un graphe,” in: Lect. Notes Math., Springer (1984), pp. 521–539.Google Scholar
  40. 40.
    O. M. Penkin, “Certain questions in the qualitative theory of boundary-value problems on graphs,” Candidate's dissertation 01.01.02, Voronezh (1988).Google Scholar
  41. 41.
    A. V. Komarov, O. M. Penkin, and Yu. V. Pokornyi, “On the spectrum of an isometric grid of strings,” Izv. Vyssh. Uchebn. Zaved., 463,No. 4, 23–27 (2000).Google Scholar
  42. 42.
    V. V. Zhikov, “Connectivity and neutralization: Examples of fractal conductivity,” Mat. Sb., 187,No. 8, 3–40 (1996).Google Scholar
  43. 43.
    A. I. Shafarevich, “Differential equations on graphs describing localized asymptotic solutions of the Navier-Stokes equation and extended vortices in an incompressible liquid [in Russian],” Preprint No. 604, Inst. Problems Mechanics, Russ. Acad. Sci. (1997).Google Scholar
  44. 44.
    F. Ali-Mehmeti, “Nonlinear waves in networks,” Math. Research, 80 (1994).Google Scholar
  45. 45.
    V. L. Pryadiev, “On the structure of the spectrum of one class of nonlinear second-order boundary-value problems,” Diff. Uravn., 35,No. 11, 1575 (1999).Google Scholar
  46. 46.
    Yu. V. Pokornyi, O. M. Penkin, and V. L. Pryadiev, “On a nonlinear boundary-value problem on a graph,” Diff. Uravn., 34,No. 5, 629–637 (1998).Google Scholar
  47. 47.
    J. Tautz, M. Lindauer, and D. C. Sandeman, “Transmission of vibration across honeycombs and its detection by bee leg receptors,” J. Exp. Biol., 199, 2585–2594 (1999).Google Scholar
  48. 48.
    J. von Below, “Can one hear the shape of a network?” in: Partial Differential Equations on Multistructures (Lect. Notes Pure Appl. Math., Vol. 219, F. Ali Mehmeti, J. von Below, and S. Nicaise, eds.), Dekker, New York (2001), pp. 19–36.Google Scholar
  49. 49.
    O. M. Penkin, “On a weak maximum principle for the elliptic equation on a two-dimensional cell complex,” Diff. Uravn., 33,No. 10, 1404–1409 (1997).Google Scholar
  50. 50.
    O. M. Penkin, “On a maximum principle for the elliptic equation on stratified sets,” Diff. Uravn., 34,No. 10, 1433–1434 (1998).Google Scholar
  51. 51.
    O. M. Penkin, “About a geometrical approach to multistructures and some qualitative properties of solutions,” in: Partial Differential Equations on Multistructures, (Lect. Notes Pure Appl. Math., Vol. 219, F. Ali Mehmeti, J. von Below, and S. Nicaise, eds.), Dekker, New York (2001), pp. 183–192.Google Scholar
  52. 52.
    S. Nicaise, “Le laplacien sur les reseaux deux-dimensionnels polygonaux topologiques,” J. Math. Pures Appl. (9), 67,No. 2, 93–113 (1988).Google Scholar
  53. 53.
    F. Ali-Mehmeti and S. Nicaise, “Some realizations of interaction problems,” Lect. Notes Pure Appl. Math., 135, 15–27 (1991).Google Scholar
  54. 54.
    F. Ali-Mehmeti and S. Nicaise, “Nonlinear interaction problems,” Nonlinear Anal., 20,No. 1, 27–61 (1993).Google Scholar
  55. 55.
    Yu. B. Pokornyi, E. N. Provotorova, and O. M. Penkin, “On the spectrum of certain boundary-value problems,” in: Questions in the Qualitative Theory of Differential Equations: Collected Scientific Works [in Russian], Novosibirsk (1988), pp. 109–113.Google Scholar
  56. 56.
    G. Lumer, “Espaces ramifies, et diffusions sur les reseaux topologiques,” C. R. Acad. Sci. Paris, Ser. A-B, 291,No. 12, 627–630 (1980).Google Scholar
  57. 57.
    F. Ali-Mehmeti, “A characterization of a generalized C -notion on networks,” Integral Equations and Operator Theory, 9,No. 6, 753–766 (1986).Google Scholar
  58. 58.
    S. Nicaise, “Spectre des reseaux topologiques finis,” Bull. Sci. Math. (2), 111,No. 4, 401–413 (1987).Google Scholar
  59. 59.
    S. Nicaise, “Elliptic operators on elementary ramified spaces,” Integral Equations and Operator Theory, 11,No. 2, 230–257 (1988).Google Scholar
  60. 60.
    F. Ali-Mehmeti, “Regular solutions of transmission and interaction problems for wave equations,” Math. Meth. Appl. Sci., 11, 665–685 (1989).Google Scholar
  61. 61.
    S. Nicaise, Polygonal Interface Problems (Methoden und Verfahren der mathematischen Physic, Vol. 39), Peter Lang Verlag, Frankfurt-am-Main (1993).Google Scholar
  62. 62.
    J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt, “Modelling of dynamic networks of thin thermoelastic beams,” Math. Meth. Appl. Sci., 16, 327–358 (1993).Google Scholar
  63. 63.
    S. Nicaise, “Controlabilité exacte frontiere des problèmes de transmission avec singularites,” C. R. Acad. Sci. Paris, Ser. I Math., 320,No. 6, 663–668 (1995).Google Scholar
  64. 64.
    S. Nicaise, “Controlabilité exacte frontiere de problèmes de transmission par adjonction de controles internes,” C. R. Acad. Sci. Paris, Ser. I Math., 321,No. 8, 969–974 (1995).Google Scholar
  65. 65.
    O. M. Penkin and Yu. V. Pokornyi, “On a boundary-value problem on a graph,” Diff. Uravn., 24,No. 4, 701–703 (1988).Google Scholar
  66. 66.
    Yu. V. Pokornyi and O. M. Penkin, “On comparison theorems for equations on graphs,” Diff. Uravn., 25,No. 7, 1141–1150 (1989).Google Scholar
  67. 67.
    Yu. V. Pokornyi, “On nonoscillation on graphs,” Dokl. Rasshir. Zased. Sem. Inst. Prikl. Mat. im. I. N. Vekua, 3,No. 3, 139–142 (1988).Google Scholar
  68. 68.
    O. M. Penkin and Yu. V. Pokornyi, “On certain qualitative properties of equations on a one-dimensional cell complex,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 57–64 (1996).Google Scholar
  69. 69.
    O. M. Penkin and Yu. V. Pokornyi, “On certain qualitative properties of equations on a one-dimensional cell complex,” Mat. Zametki, 59,No. 5, 777–780 (1997).Google Scholar
  70. 70.
    Yu. V. Pokornyi, “On nonoscillation of ordinary differential equations and inequalities on spatial networks,” Diff. Uravn., 37,No. 5, 661–672 (2001).Google Scholar
  71. 71.
    Yu. V. Pokornyi and I. G. Karelina, “Nonlinear correlation theorems on graphs,” Mat. Zametki, 50,No. 2, 149–151 (1991).Google Scholar
  72. 72.
    Yu. V. Pokornyi and I. G. Karelina, “On the Green's function of the Dirichlet problem on a graph,” Dokl. Akad. Nauk SSSR, 318,No. 3, 942–944 (1991).Google Scholar
  73. 73.
    Yu. V. Pokornyi and I. G. Karelina, “Nonlinear correlation theorems on graphs,” Ukr. Mat. Zh., 43,No. 4, 525–529 (1991).Google Scholar
  74. 74.
    I. G. Karelina and Yu. V. Pokornyi, “On the Green's function of a boundary-value problem on a graph,” Diff. Uravn., 30,No. 1, 41–47 (1994).Google Scholar
  75. 75.
    M. G. Zagorodnii, “On evolution problems on graphs,” Usp. Mat. Nauk, 46,No. 6, 199–200 (1991).Google Scholar
  76. 76.
    M. G. Zagorodnii, “Spectral completeness of root functions of a boundary-value problem on a graph,” Dokl. Rossiisk. Akad. Nauk, 335,No. 3, 281–283 (1994).Google Scholar
  77. 77.
    Yu. V. Pokornyi and V. L. Pryadiev, “On the distribution of zeros of the eigenfunctions of the Sturm-Liouville problem on a spatial network,” Dokl. Rossiisk. Akad. Nauk, 364,No. 3, 316–318 (1999).Google Scholar
  78. 78.
    Yu. V. Pokornyi and R. Mustafokulov, “On the positivity of the Green's function of linear boundaryvalue problems for fourth-order equations on a graph,” Izv. Vyssh. Uchebn. Zaved., Mat., 441,No. 2, 75–82 (1999).Google Scholar
  79. 79.
    F. Ali Mehmeti and B. Dekoninck, “Transient vibrations of planar networks of beams: Interaction of flexion, transversal, and longitudinal waves,” in: Partial Differential Equations on Multistructures, (Lect. Notes Pure Appl. Math., Vol. 219, F. Ali Mehmeti, J. von Below, and S. Nicaise, eds.), Dekker, New York (2001), pp. 1–18.Google Scholar
  80. 80.
    S. Nicaise and O. Penkin, “Relationship between the lower frequency spectrum of plates and network of beams,” Math. Meth. Appl. Sci., 23, 1389–1399 (2000).Google Scholar
  81. 81.
    A. V. Borovskikh and A. V. Kopytin, “On the propagation of waves through a network,” in: Collected Papers of Graduate and Undergraduate Students of the Mathematics Department of VSU [in Russian], Voronezh (1999), 21–25.Google Scholar
  82. 82.
    F. Ali-Mehmeti, J. von Below, and S. Nicaise, eds., Partial Differential Equations on Multistructures (Lect. Notes Pure Appl. Math., Vol. 219), Dekker, New York (2001).Google Scholar
  83. 83.
    A. A. Gavrilov and O. M. Penkin, “A weak maximum principle for the elliptic operator on a stratified set,” in: Works VVMSh “Pontryagin Readings 11” [in Russian], Part 1, Voronezh (2000), pp. 48–56.Google Scholar
  84. 84.
    C. Sturm, “Mèmore sur les èquations differentielles linèaires du second ordre,” J. Math. Pures Appl. 1, 106–186 (1836).Google Scholar
  85. 85.
    C. Sturm “Sur une class d'equations a differences partielle,” J. Math. Pures Appl., 1, 373–444 (1836).Google Scholar
  86. 86.
    O. D. Kellogg, “The oscillation of functions of an orthogonal set,” Amer. J. Math., No. 38, 1–5 (1916).Google Scholar
  87. 87.
    O. D. Kellogg, “Orthogonal function sets arising from integral equations,” Amer. J. Math., No. 40, 145–154 (1918).Google Scholar
  88. 88.
    O. D. Kellogg, “Interpolation properties of orthogonal sets of solutions of differential equations,” Amer. J. Math., No. 40, 220–234 (1918).Google Scholar
  89. 89.
    F. R. Gantmakher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems [in Russian], Gostekhizdat, Moscow (1950).Google Scholar
  90. 90.
    A. Yu. Levin and G. D. Stepanov, “One-dimensional boundary-value problems with operators not diminishing the number of sign changes,” Sib. Mat. Zh., 17,No. 3, 606–625 (1976); 17, No. 4, 813–830 (1976).Google Scholar
  91. 91.
    Yu. V. Pokornyi, “On the spectrum of an interpolation boundary-value problem,” Usp. Mat. Nauk, 32,No. 6, 198–199 (1977).Google Scholar
  92. 92.
    Yu. V. Pokornyi, “On a nonclassical Vallée-Poussin problem,” Diff. Uravn., 14,No. 6, 1018–1027 (1978).Google Scholar
  93. 93.
    V. Ya. Derr, “Toward a generalized Vallée-Poussin problem,” Diff. Uravn., 23,No. 11, 1861–1872 (1987).Google Scholar
  94. 94.
    A. V. Borovskikh and Yu. V. Pokornyi, “Chebyshev-Haar systems in the theory of discontinuous Kellogg kernels,” Usp. Mat. Nauk, 49,No. 3, 3–42 (1994).Google Scholar
  95. 95.
    Yu. V. Pokornyi and K. P. Lazarev, “Certain oscillation theorems for multipoint problems,” Diff. Uravn., 23,No. 4, 658–670 (1987).Google Scholar
  96. 96.
    Yu. V. Pokornyi and A. V. Borovskikh, “On the Kellogg theorem for discontinuous Green's functions,” Mat. Zametki, 53,No. 1, 151–153 (1993).Google Scholar
  97. 97.
    Yu. V. Pokornyi, “On sign-regular Green's functions for certain nonclassical problems,” Usp. Mat. Nauk, 36,No. 4, 205–206 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Yu. V. Pokornyi
  • A. V. Borovskikh

There are no affiliations available

Personalised recommendations