Zero-Sum Stochastic Games with Partial Information

  • M. K. Ghosh
  • D. McDonald
  • S. Sinha


We study a zero-sum stochastic game on a Borel state space where the state of the game is not known to the players. Both players take their decisions based on an observation process. We transform this into an equivalent problem with complete information. Then, we establish the existence of a value and optimal strategies for both players.

Stochastic games partial information value optimal strategies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SHAPLEY, L., Stochastic Games, Proceedings of National Academy of Sciences, Vol.39, 1095–1100, 1953.Google Scholar
  2. 2.
    VRIEZE, K., Zero-Sum Stochastic Games: A Survey, CWI Quarterly, Vol.2, 147–170, 1989.Google Scholar
  3. 3.
    BERTSEKAS, D. P., and SHREVE, S. E., Stochastic Optimal Control, Academic Press, New York, NY, 1978.Google Scholar
  4. 4.
    DYNKIN, E. B., and YUSHKEVICH, A. A., Controlled Markov Processes, Springer Verlag, Berlin, Germany, 1979.Google Scholar
  5. 5.
    HERNANDEZ-LERMA, O., Adaptive Control of Markov Processes, Springer Verlag, New York, NY, 1989.Google Scholar
  6. 6.
    BORKAR, V. S., N-Person Noncooperative Stochastic Games with Partial Information, Game Theory and Economic Applications, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, New York, NY, Vol.389, 98–113, 1992.Google Scholar
  7. 7.
    ROSENBERG, D., and VIELLE, N., The Maxmin of Recursive Games with Incomplete Information on One Side, Mathematics of Operations Research, Vol.25, 23–35, 2000.Google Scholar
  8. 8.
    SORIN, S., Big Match with Lack of Information on One Side, Part 1, International Journal of Game Theory, Vol.13, 201–255, 1984.Google Scholar
  9. 9.
    SORIN, S., Big Match with Lack of Information on One Side, Part 2, International Journal of Game Theory, Vol.14, 173–204, 1985.Google Scholar
  10. 10.
    SORIN, S., and ZAMIR, S., A 2-Person Game with Lack of Information on 1 1/2; Sides, Mathematics of Operations Research, Vol.10, 17–23, 1985.Google Scholar
  11. 11.
    ZAMIR, S., Repeated Games of Incomplete Information: Zero-Sum, Handbook of Game Theory with Economic Applications, Elsevier Science Publishers, Amsterdam, Holland, Vol.1, 109–154, 1992.Google Scholar
  12. 12.
    BORKAR, V. S., and GHOSH, M. K., Stochastic Differential Games: An Occupation Measure Based Approach, Journal of Optimization Theory and Applications, Vol.73, 359–385, 1992 (Errata Corrige, Vol. 88, pp. 251-;252, 1996).Google Scholar
  13. 13.
    KUMAR, P. R., and SHIAU, T. H., Existence of Value and Randomized Strategies in Zero-Sum Discrete-Time Stochastic Dynamic Games, SIAM Journal on Control and Optimization, Vol.19, 617–634, 1981.Google Scholar
  14. 14.
    MAITRA, A., and PARTHASARATHY, T., On Stochastic Games, Journal of Optimization Theory and Applications, Vol.5, 289–300, 1970.Google Scholar
  15. 15.
    NOWAK, A. S., On Zero-Sum Stochastic Games with General State Space, II, Probability and Mathematical Statistics, Vol.4, 143–152, 1984.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • M. K. Ghosh
    • 1
  • D. McDonald
    • 2
  • S. Sinha
    • 3
  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of MathematicsUniversity of OttawaOttawaCanada
  3. 3.Department of MathematicsJadavpur UniversityKolkataIndia

Personalised recommendations