Advertisement

Journal of Optimization Theory and Applications

, Volume 120, Issue 1, pp 129–145 | Cite as

Hartley Proper Efficiency in Multifunction Optimization

  • D. S. Kim
  • G. M. Lee
  • P. H. Sach
Article

Abstract

This paper gives a necessary condition for the Hartley proper efficiency in a vector optimization problem whose objectives and constraints are described by multifunctions F and G. This condition is established under a quasiconvexity requirement of the support functions of F and G or the generalized cone-convexity of a multifunction constructed from F and G.

Proper efficiency vector optimization multifunctions scalarizations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuhn, H. W., and Tucker, A. W., Nonlinear Programming, Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, pp. 48-492, 1951.Google Scholar
  2. 2.
    Geoffrion, A. M., Proper Efficiency and the Theory of Vector Maximization, Journal of Mathematical Analysis and Applications, 22, pp. 618-630, 1968.Google Scholar
  3. 3.
    Hartley, R., On Cone Efficiency, Cone Convexity, and Cone Compactness, SIAM Journal on Applied Mathematics, 34, pp. 211-222, 1978.Google Scholar
  4. 4.
    Tamura, K., and Arai, S., On Proper and Improper Efficient Solutions of Optimal Problems with Multicriteria, Journal of Optimization Theory and Applications, 38, pp. 191-205, 1982.Google Scholar
  5. 5.
    Borwein, J. M., Proper Efficient Points for Maximization with Respect to Cones, SIAM Journal on Control and Optimization, 15, pp. 57-63, 1977.Google Scholar
  6. 6.
    Borwein, J. M., The Geometry of Pareto Efficiency over Cones, Mathematische Operationforschung und Statistik, Serie Optimization, 11, pp. 235-248, 1980.Google Scholar
  7. 7.
    Benson, H. P., An Improved Definition of Proper Efficiency for Vector Maximization with Respect to Cones, Journal of Mathematical Analysis and Applications, 71, pp. 232-241, 1979.Google Scholar
  8. 8.
    Henig, M. I., Proper Efficiency with Respect to Cones, Journal of Optimization Theory and Applications, 36, pp. 387-407, 1982.Google Scholar
  9. 9.
    Jahn, J., A Characterization of Properly Minimal Elements of a Set, SIAM Journal on Control and Optimization, 23, pp. 649-656, 1985.Google Scholar
  10. 10.
    Dauer, J. P., and Gallagher, R. J., Positive Proper Efficiency and Related Cone Results in Vector Optimization Theory, SIAM Journal on Control and Optimization, 28, pp. 158-172, 1990.Google Scholar
  11. 11.
    Borwein, J. M., and Zhuang, D. M., Superefficiency in Convex Optimization, ZOR-Mathematical Methods of Operations Research, 35, pp. 175-184, 1991.Google Scholar
  12. 12.
    Borwein, J. M., and Zhuang, D. M., Superefficiency in Convex Optimization, Transactions of the American Mathematical Society, 38, pp. 105-122, 1993.Google Scholar
  13. 13.
    Guerraggio, A., Molho, E., and Zaffaroni, A., On the Notion of Proper Efficiency in Vector Optimization, Journal of Optimization Theory and Applications, 82, pp. 1-21, 1994.Google Scholar
  14. 14.
    Lin, L. J., Optimization of Set-Valued Functions, Journal of Mathematical Analysis and Applications, 186, pp. 30-51, 1994.Google Scholar
  15. 15.
    Yang, X. M., Yang, X. Q., and Chen, G. Y., Theorems of the Alternative and Optimization with Set-Valued Maps, Journal of Optimization Theory and Applications, 107, pp. 627-640, 2000.Google Scholar
  16. 16.
    Sach, P. H., Nonconvex Alternative Theorems and Multiobjective Optimization, Proceedings of the Korea-Vietnam Joint Seminar on Mathematical Optimization Theory and Applications, Pusan, Korea, 2001; D. S. Kim and P. H. Sach, pp. 1-12, 2001.Google Scholar
  17. 17.
    Song, W., Duality in Set-Valued Optimization, Dissertations Mathematicae, 375, pp. 1-67, 1998.Google Scholar
  18. 18.
    Yang, X. M., Li, D., and Yang, S. Y., Near-Subconvexlineness in Vector Optimization with Set-Valued Functions, Journal of Optimization Theory and Applications, 110, pp. 413-427, 2001.Google Scholar
  19. 19.
    Sion, M., On General Minimax Theorems, Pacific Journal of Mathematics, 8, pp. 171-176, 1958.Google Scholar
  20. 20.
    Chen, G. Y., and Rong, W. D., Characterizations of the Benson Proper Efficiency for Nonconvex Vector Optimization, Journal of Optimization Theory and Applications, 98, pp. 365-384, 1998.Google Scholar
  21. 21.
    Li, Z. F., Benson Proper Efficiency in the Vector Optimization of Set-valued Maps, Journal of Optimization Theory and Applications, 98, pp. 263-649, 1998.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • D. S. Kim
    • 1
  • G. M. Lee
    • 1
  • P. H. Sach
    • 2
  1. 1.Department of Applied MathematicsPukyong National UniversityPusanRepublic of Korea
  2. 2.Hanoi Institute of MathematicsBoho, HanoiVietnam

Personalised recommendations