Advertisement

Journal of Statistical Physics

, Volume 116, Issue 5–6, pp 1201–1245 | Cite as

Metastable States, Transitions, Basins and Borders at Finite Temperatures

  • Sorin Tănase-Nicola
  • Jorge Kurchan
Article

Abstract

Langevin/Fokker-Planck processes can be immersed in a larger frame by adding fictitious fermion variables. The (super) symmetry of this larger structure has been used to derive Morse theory in an elegant way. The original physical diffusive motion is retained in the zero-fermion subspace. Here we study the subspaces with non-zero fermion number which yield deep information, as well as new computational strategies, for barriers, reaction paths, and unstable states – even in non-zero temperature situations and when the barriers are of entropic or collective nature, as in the thermodynamic limit. The presentation is self-contained.

Reaction paths Metastability Stochastic methods Kramers' problem Morse theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. Hänggi, P. Talkner,and M. Borkovec,Rev.Mod.Phys. 62:252 (1990).Google Scholar
  2. 2.
    J. Langer,Ann.Phys. 41:108 (1967).Google Scholar
  3. 4.
    G.J. Moro,J.Chem.Phys. 103:7514 (1995).Google Scholar
  4. 5.
    A. Bovier, M. Eckhoff, V. Gayrard,and M. Klein,Preprint (2003a).Google Scholar
  5. 6.
    A. Bovier, V. Gayrard,and M. Klein,Preprint (2003b).Google Scholar
  6. 7.
    B. Gaveau and L. Schulman,J.Math.Phys. 39:1517 (1998).Google Scholar
  7. 8.
    B. Gaveau and L. Schulman,J.Math.Phys. 37:3897 (1996a).Google Scholar
  8. 9.
    B. Gaveau and L.S. Schulman,Phys.Lett.A 229:347 (1996b).Google Scholar
  9. 10.
    B. Gaveau, A. Lesne,and L. Schulman,Phys.Lett.A 258:222 (1999).Google Scholar
  10. 11.
    A. Bovier, M. Eckhoff, V. Gayrard,and M. Klein,Commun.Math.Phys. 228:219 (2002).Google Scholar
  11. 12.
    C. Sch ¨utte,Preprint SC99-18,ZIB-Berlin (1999).Google Scholar
  12. 13.
    G. Biroli and J. Kurchan,Phys.Rev.E 64:2001 (2001).Google Scholar
  13. 14.
    H. Risken,The Fokker-Plank equation (Springer,1996).Google Scholar
  14. 15.
    D.J. Wales,Energy Landscapes (Cambridge University Press,2003).Google Scholar
  15. 16.
    J. Milnor,Morse Theory (Princeton University Press,1963).Google Scholar
  16. 17.
    E. Witten,J.Diff.Geom. 17:661 (1982).Google Scholar
  17. 19.
    H. Nicolai,Nucl.Phys. B176:419 (1980a).Google Scholar
  18. 20.
    H. Nicolai,Phys.Lett. 89B:341 (1980b).Google Scholar
  19. 21.
    H. Nicolai,Phys.Lett. 117B:408 (1982).Google Scholar
  20. 22.
    G. Parisi and N. Sourlas,Nucl.Phys. B206:321 (1982).Google Scholar
  21. 23.
    S. Cecotti and L. Girardello,Ann.Phys.(N.Y.) 145:81 (1983).Google Scholar
  22. 24.
    F. Cooper, A. Khare,and U. Sukhatme,Physics Reports 251:267 (1995).Google Scholar
  23. 27.
    B. Helffer and F. Nier,preprint 03-25,Université de Rennes (2003b).Google Scholar
  24. 30.
    J. Kurchan and L. Laloux,J.Phys.A 29:1929 (1996).Google Scholar
  25. 32.
    R. Graham,and D. Roekaerts,Phys.Rev.D 34:2312 (1986).Google Scholar
  26. 33.
    See S. Fahy and D. Hamann,Phys.Rev.B 43:765 (1991),for applications of this kind in Diffusion Monte Carlo techniques.Google Scholar
  27. 34.
    J. Zinn-Justin,Quantum Field Theory,and Critical Phenomena (Clarendon Press,1996).Google Scholar
  28. 35.
    S. Tanase-Nicola and J. Kurchan,J.Phys.A 36:10299 (2003a).Google Scholar
  29. 37.
    C. Dellago, P.G. Bolhuis, F.S. Csajka,and D. Chandler,J.Chem.Phys. 108:1964 (1998).Google Scholar
  30. 38.
    P.G. Bolhuis, D. Chandler, C. Dellago,and P.L. Geissler,Annu.Rev.Phys.Chem. 53:291 (2002).Google Scholar
  31. 39.
    E. Gozzi and M. Reuter,Chaos,solitons fractals 4:1117 (1994).Google Scholar
  32. 40.
    D.Ruelle,Inventiones Mathematicae 34:231 (1976).Google Scholar
  33. 41.
    S. Tanase-Nicola and J. Kurchan (in preparation).Google Scholar
  34. 42.
    S. Tanase-Nicola and J. Kurchan,Phys.Rev.Lett. 91:188302 (2003b).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Sorin Tănase-Nicola
    • 1
  • Jorge Kurchan
    • 1
  1. 1.PMMH UMR 7636 CNRS-ESPCI, 10, Rue Vauquelin, 75231Paris CEDEX 05France

Personalised recommendations