Journal of Statistical Physics

, Volume 116, Issue 1–4, pp 571–589 | Cite as

Quantum Phase Diagram of an Exactly Solved Mixed Spin Ladder

  • M. T. Batchelor
  • X.-W. Guan
  • N. Oelkers
  • Z.-J. Ying

Abstract

We investigate the quantum phase diagram of the exactly solved mixed spin-(1/2,1) ladder via the thermodynamic Bethe ansatz (TBA). In the absence of a magnetic field the model exhibits three quantum phases associated with su(2), su(4), and su(6) symmetries. In the presence of a strong magnetic field, there is a third and full saturation magnetization plateaux within the strong antiferromagnetic rung coupling regime. Gapless and gapped phases appear in turn as the magnetic field increases. For weak rung coupling, the fractional magnetization plateau vanishs and the model undergoes new quantum phase transitions. However, in the ferromagnetic coupling regime, the system does not have a third saturation magnetization plateau. The critical behaviour in the vicinity of the critical points is also derived systematically using the TBA.

mixed spin ladder exactly solved model magnetization plateaux phase diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. H. Lieb, Phys. Rev. Lett. 18:692 (1967); Phys. Rev. 162:162 (1967).Google Scholar
  2. 2.
    E. Dagotto and T. M. Rice, Science 271:618 (1996); E. Dagotto, Rep. Prog. Phys. 62:1525 (1999).Google Scholar
  3. 3.
    M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka, Phys. Rev. Lett. 73:3463 (1994).Google Scholar
  4. 4.
    B. Chiari, O. Piovesana, T. Tarantelli, and P. F. Zanazzi, Inorg. Chem. 29:1172 (1990); G. Chaboussant et al., Phys. Rev. Lett. 79:925 (1997); M. Hagiwara, A. Katori, U. Schollwöck, and H.-J. Mikeska, Phys. Rev. B 62:1051 (2002).Google Scholar
  5. 5.
    B. C. Watson, V. N. Kotov, and M. W. Meisel, Phys. Rev. Lett. 86:5168 (2001).Google Scholar
  6. 6.
    C. P. Landee, M. M. Turnbull, C. Galeriu, J. Giantsidis, and F. M. Woodward, Phys. Rev. B 63:100402 (2001).Google Scholar
  7. 7.
    H. Tanaka, K. Takatsu, W. Shiramura, and T. Ono, J. Phys. Sci. Japan 65:1945 (1990); W. Shiramura, K. Takatsu, H. Tanaka, K. Kamishima, M. Takahashi, H. Mitamura, and T. Goto, J. Phys. Soc. Japan 66:1900 (1997); N. Gavadini, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer, and H. Mutka, Eur. Phys. J. B 7:519 (1999).Google Scholar
  8. 8.
    E. Dagotto, J. Riera, and D. J. Scalapino, Phys. Rev. B 45:5744 (1992); S. Gopalan, T. M. Rice, and M. Sigrist, Phys. Rev. B 49:8901 (1994).Google Scholar
  9. 9.
    A. A. Nersesyan and A. M. Tsvelik, Phys. Rev. Lett. 78:3939 (1997); A. K. Kolezhuk and H.-J. Mikeska, Phys. Rev. Lett. 80:2709 (1998); T. Giamarchi and A. M. Tsvelik, Phys. Rev. B 59:11398 (1999).Google Scholar
  10. 10.
    T. Barnes and J. Riera, Phys. Rev. B 50:6817 (1994); K. Hida, Phys. Rev. B 46:8268 (1992).Google Scholar
  11. 11.
    G. S. Uhrig and B. Normand, Phys. Rev. B 58:R14705 (1998).Google Scholar
  12. 12.
    W. Zheng, R. R. P. Singh, and J. Oitmaa, Phys. Rev. B 55:8052 (1997); X. Wang and L. Yu, Phys. Rev. Lett. 84:5399 (2000).Google Scholar
  13. 13.
    M. Reigrotzki, H. Tsunetsugu, and T. M. Rice, J. Phys. Condens. Matter 6:9235 (1994).Google Scholar
  14. 14.
    G. Chaboussant, M.-H. Julien, Y. Fagot-Revurat, M. Hanson, L. P. Lęvy, C. Berthier, M. Horvatic, and O. Piovesana, Eur. Phys. J. B 6:167 (1998).Google Scholar
  15. 15.
    M. Troyer, H. Tsunetsugu, and D. Würtz, Phys. Rev. B 50:13515 (1994).Google Scholar
  16. 16.
    Y. Wang, Phys. Rev. B 60:9236 (1999); Y. Wang and P. Schlottmann, Phys. Rev. B 62:3845 (2000).Google Scholar
  17. 17.
    H. Frahm and A. Kundu, J. Phys. C: Cond. Mat. 11:L557 (1999).Google Scholar
  18. 18.
    M. T. Batchelor and M. Maslen, J. Phys. A 32:L377 (1999); J. de Gier, M. T. Batchelor, and M. Maslen, Phys. Rev. B 61:15196 (2000); J. de Gier and M. T. Batchelor, Phys. Rev. B 62:R3584 (2000); M. T. Batchelor, J. de Gier, J. Links, and M. Maslen, J. Phys. A 33:L97 (2000); M. Maslen, M. T. Batchelor, and J. de Gier, Phys. Rev. B 68:024418 (2003).Google Scholar
  19. 19.
    M. T. Batchelor, J. de Gier, and M. Maslen, J. Stat. Phys. 102:559 (2001).Google Scholar
  20. 20.
    J. Links and A. Foerster, Phys. Rev. B 62:3845 (2000); A. Foerster, K. E. Hibberd, J. R. Links, and I. Roditi, J. Phys. A 34:L25 (2001).Google Scholar
  21. 21.
    A. A. Zvagin, J. Phys. A 34:R21 (2001); D. Arnaudon, A. Sedrakyan, and T. Sedrakyan, preprint, hep-th/0210087.Google Scholar
  22. 22.
    M. T. Batchelor, X.-W. Guan, A. Foerster, and H.-Q. Zhou, New J. Phys. 5:107 (2003); M. T. Batchelor, X.-W. Guan, A. Foerster, and H.-Q. Zhou, Nucl. Phys. B 669:385 (2003).Google Scholar
  23. 23.
    K. Kodma and M. Takigawa et al., Science 298:395 (2002).Google Scholar
  24. 24.
    A. K. Kolezhuk, H.-J. Mikeska, and S. Yamamoto, Phys. Rev. B 55:R3336 (1997); A. K. Kolezhuk, H.-J. Mikeska, K. Maisinger, and U. Schollwöck, Phys. Rev. B 59:13565 (1999).Google Scholar
  25. 25.
    S. Yamamoto, Phys. Rev. B 59:1024 (1999); S. Yamamoto and T. Sakai, J. Phys.: Condens. Matter 11:5175 (1999).Google Scholar
  26. 26.
    S. K. Pati, S. Ramasesha, and D. Sen, Phys. Rev. B 55:8894 (1997); T. Sakai and K. Okamoto, cond-mat/0204375.Google Scholar
  27. 27.
    . W. Zheng and J. Oitmaa, cond-mat/0301580.Google Scholar
  28. 28.
    J. Lou, C. Chen, and S. Qin, Phys. Rev. B 64:144403 (2001).Google Scholar
  29. 29.
    M. Hagiwara, K. Minami, Y. Narumi, K. Tatani, and K. Kindo, J. Phys. Soc. Japan 67:2209 (1998).Google Scholar
  30. 30.
    K. Takano, Physica B 329:1271 (2003); J.-H. Park et al., Physica B 329:1152 (2003).Google Scholar
  31. 31.
    Y. Hosokoshi, K. Katoch, Y. Nakazawa, H. Nokano, and K. Inoue, J. Amer. Chem. 123:7921 (2001); Y. Hosokoshi, K. Katoch, and K. Inoue, Synthetic Metals 527:133-134 (2003).Google Scholar
  32. 32.
    Y.-Q. Li, M. Ma, D. N. Shi, and F. C. Zhang, Phys. Rev. Lett. 81:3527 (1998); S.-J. Gu and Y.-Q. Li, Phys. Rev. B 66:092404 (2002); S.-J. Gu, Y.-Q. Li, and H.-Q. Zhou, cond-mat/0308432.Google Scholar
  33. 33.
    Z.-J. Ying, A. Foerster, X.-W. Guan, B. Chen, and I. Roditi, cond-mat/0308443.Google Scholar
  34. 34.
    B. Sutherland, Phys. Rev. B 12:3795 (1975); P. Schlottmann, Phys. Rev. B 45:5293 (1992).Google Scholar
  35. 35.
    M. Takahashi, Prog. Theor. Phys. 46:401 (1971); P. Schlottmann, Phys. Rev. B 33:4880 (1986).Google Scholar
  36. 36.
    K. Lee, J. Korean Phys. Soc. 27:205 (1994).Google Scholar
  37. 37.
    H. Kageyama et al., Phys. Rev. Lett. 82:3168 (1999); S. Miyahara and K. Ueda, Phys. Rev. Lett. 82:3701 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • M. T. Batchelor
    • 1
    • 2
  • X.-W. Guan
    • 1
    • 2
  • N. Oelkers
    • 1
    • 2
  • Z.-J. Ying
    • 3
    • 4
  1. 1.Department of Theoretical PhysicsResearch School of Physical Sciences and EngineeringAustralia
  2. 2.Centre for Mathematics and its Applications, Mathematical Sciences InstituteAustralian National University, Canberra ACTAustralia
  3. 3.Instituto de Física da UFRGSPorto AlegreBrasil
  4. 4.Hangzhou Teachers CollegeHangzhouPeople's Republic of China

Personalised recommendations