Advertisement

Journal of Statistical Physics

, Volume 116, Issue 1–4, pp 815–820 | Cite as

Adiabatic Piston as a Dynamical System

  • A. I. Neishtadt
  • Y. G. Sinai
Article

Abstract

We consider systems of finitely many interacting particles in a cube with a separating wall having a big mass M(adiabatic piston). Assuming that the particles reflect elastically from the ball and the initial velocity of the piston is zero we prove that as Mtends to infinity the dynamics of the piston converges to periodic oscillations.

adiabatic piston adiabatic invariant averaging method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. V. Anosov, Averaging in systems of ordinary differential equations with rapidly oscillating solutions, Izv. Akad. Nauk SSSR, Ser. Mat. 24:721–742 (1960).Google Scholar
  2. 2.
    V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations(Springer-Verlag, 1983), p. 334.Google Scholar
  3. 3.
    N. I. Chernov, J. L. Lebowitz, and Y. G. Sinai, Dynamics of a massive piston in an ideal gas, Russian Math. Surveys 57:1045–1125 (2002).Google Scholar
  4. 4.
    C. Gruber, Thermodynamics of systems with internal adiabatic constraints: Time evolution of the adiabatic piston, European J. Phys. 20:259–266 (1999).Google Scholar
  5. 5.
    Hard Ball Systems and Lorentz Gas, Encyclopaedia Math. Sci., Vol. 101 (Springer-Verlag, 2000).Google Scholar
  6. 6.
    T. Kasuga, On the adiabatic theorem for the Hamiltonian system of differential equations in classical mechanics. I, II, III, Proc. Japan Acad. 37:366–382 (1961).Google Scholar
  7. 7.
    E. Lieb, Some problems in statistical mechanics that I would like to see solved, Phys. A 263:491–499 (1999).Google Scholar
  8. 8.
    J. L. Lebowitz, J. Piasecki, and Y. G. Sinai, Scaling dynamics of a massive piston in an ideal gas, in Hard Ball Systems and Lorentz Gas, Encyclopaedia Math. Sci., Vol. 101 (Springer-Verlag, 2000), pp. 217–227.Google Scholar
  9. 9.
    Y. G. Sinai, Dynamics of a massive particle surrounded by a finite number of light particles, Theor. Math. Phys. 125:1351–1357 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. I. Neishtadt
    • 1
  • Y. G. Sinai
    • 2
    • 3
  1. 1.Space Research InstituteRussian Academy of SciencesRussia
  2. 2.Mathematics DepartmentPrinceton UniversityUSA
  3. 3.Landau Institute of Theoretical PhysicsRussian Academy of SciencesRussia

Personalised recommendations