Journal of Statistical Physics

, Volume 116, Issue 1–4, pp 475–506 | Cite as

Magnetic Lieb—Thirring Inequalities with Optimal Dependence on the Field Strength

  • László Erdős
  • Jan Philip Solovej


The Pauli operator describes the energy of a nonrelativistic quantum particle with spin 1/2 in a magnetic field and an external potential. Bounds on the sum of the negative eigenvalues are called magnetic Lieb–Thirring (MLT) inequalities. The purpose of this paper is twofold. First, we prove a new MLT inequality in a simple way. Second, we give a short summary of our recent proof of a more refined MLT inequality(8) and we explain the differences between the two results and methods. The main feature of both estimates, compared to earlier results, is that in the large field regime they grow with the optimal (first) power of the strength of the magnetic field. As a byproduct of the method, we also obtain optimal upper bounds on the pointwise density of zero energy eigenfunctions of the Dirac operator.

kernel of Dirac operator non-homogeneous magnetic field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bugliaro, C.Fefferman, J.Fröhlich, G.M.Graf,and J. Stubbe,A Lieb-Thirring bound for a magnetic Pauli Hamiltonian,Comm.Math.Phys}. 187}:567–582 (19Google Scholar
  2. 2.
    L. Bugliaro, J. Fröhlich,and G.M. Graf,Stability of quantum electrodynamics with nonrelativistic matter,Phys.Rev.Lett. 77:3494–3497 (1996).Google Scholar
  3. 3.
    L. Bugliaro, C. Fefferman,and G.M. Graf,A Lieb-Thirring bound for a magnetic Pauli Hamiltonian,II,Rev.Mat.Iberoamericana 15:593–619 (1999).Google Scholar
  4. 4.
    L. Erdo 1/2s,Magnetic Lieb-Thirring inequalities,Comm.Math.Phys. 170:629–668 (1995).Google Scholar
  5. 5.
    L.Erdo 1/2s and J.P. Solovej,Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields.I.Non-asymptotic Lieb-Thirring type estimate, Duke J.Math. 96:127–173 (1999).Google Scholar
  6. 6.
    L.Erdo 1/2s and J.P. Solovej,Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields.II.Leading order asymptotic estimates,Comm. Math.Phys. 188:599–656 (1997).Google Scholar
  7. 7.
    L.Erdos and J.P. Solovej,The kernel of Dirac operators on S 3 and R3,Rev.Math.Phys . 13:1247–1280 (2001).Google Scholar
  8. 8.
    L.Erdos and J.P. Solovej,Uniform Lieb-Thirring inequality for the three dimensional Pauli operator with a strong non-homogeneous magnetic field.Available at appear in Ann.Henri Poincaré(2003).Google Scholar
  9. 9.
    E.H. Lieb,Lieb-Thirring Inequalities,Kluwer Encyclopedia of Mathematics,Supplement, Vol.II (2000),pp.311–313.Google Scholar
  10. 10.
    E.H. Lieb, M. Loss,and J.P. Solovej,Stability of matter in magnetic fields,Phys.Rev. Lett. 75:985–989 (1995).Google Scholar
  11. 11.
    E.H. Lieb, J.P. Solovej,and J. Yngvason,Asymptotics of heavy atoms in high magnetic fields:I.Lowest Landau band region,Comm.Pure Appl.Math. 47:513–591 (1994).Google Scholar
  12. 12.
    E.H. Lieb, J.P. Solovej,and J. Yngvason,Asymptotics of heavy atoms in high magnetic fields:II.Semiclassical regions,Comm.Math.Phys. 161:77–124 (1994).Google Scholar
  13. 13.
    E.H. Lieb, J.P. Solovej,and J. Yngvason,Ground states of large quantum dots in mag-netic fields,Phys.Rev.B 51:10646–10665 (1995).Google Scholar
  14. 14.
    E.H. Lieb and W. Thirring,Inequalities for moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities,in Studies in Mathematical Physics, E. Lieb, B. Simon,and A. Wightman,eds.(Princeton University Press,1975), pp.269–330.Google Scholar
  15. 15.
    P. Li and S.T. Yau,On the parabolic kernel of the Schrödinger operator,Acta Math. 156:153–201 (1986).Google Scholar
  16. 16.
    M. Loss and H.-T. Yau,Stability of Coulomb systems with magnetic fields:III.Zero energy bound states of the Pauli operator,Comm.Math.Phys. 104:283–290 (1986).Google Scholar
  17. 17.
    Z. Shen,On the moments of negative eigenvalues for the Pauli operator,J.Differential Equations 149:292–327 (1998)and 151:420-455 (1999). 18.B.Simon,Functional Integration and Quantum Physics(Academic Press,New York, 1979).Google Scholar
  18. 19.
    A. Sobolev,On the Lieb-Thirring estimates for the Pauli operator,Duke Math.J. 82:607–635 (1996).Google Scholar
  19. 20.
    A. Sobolev,Lieb-Thirring inequalities for the Pauli operator in three dimensions,IMA Vol.Math.Appl. 95:155–188 (1997).Google Scholar
  20. 21.
    A. Sobolev,Quasiclassical asymptotics for the Pauli operator,Comm.Math.Phys. 194:109–134 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • László Erdős
    • 1
    • 2
  • Jan Philip Solovej
    • 3
  1. 1.School of MathematicsGeorgia Tech Atlanta
  2. 2.Mathematisches Institut LMUMünichGermany
  3. 3.Department of MathematicsUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations