Journal of Statistical Physics

, Volume 93, Issue 3–4, pp 715–724 | Cite as

Scaling of the Irreducible SO(3)-Invariants of Velocity Correlations in Turbulence

  • Siegfried Grossmann
  • Detlef Lohse
  • Achim Reeh
Article

Abstract

The scaling behavior of the SO(3) irreducible amplitudes \(d_n^1 (r)\) of velocity structure tensors is numerically examined for Navier–Stokes turbulence. Here, l characterizes the irreducible representation by the index of the corresponding Legendre polynomial, and n denotes the tensorial rank, i.e., the order of the moment. For moments of different order n but with the same representation index l extended self-similarity (ESS) towards large scales is found. Intermittency seems to increase with l. We estimate that a crossover behavior between different inertial subrange scaling regimes in the longitudinal and transversal structure functions will hardly be detectable for achievable Reynolds numbers.

Fully developed turbulence SO(3) invariants of velocity correlations scaling exponents intermittency longitudinal vs. transversal velocity structure functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (The MIT Press, Cambridge, Massachusetts, 1975); L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press,Oxford, 1987).Google Scholar
  2. 2.
    S. G. Saddoughi and S. V. Veeravalli, J. Fluid Mech. 268:333 (1994).Google Scholar
  3. 3.
    J. Herweijer and W. van de Water, in Advances in Turbulence V, R. Benzi, ed. (Kluwer Academic Publishers, New York, 1995), p. 210; Phys. Scripta T67:136 (1996).Google Scholar
  4. 4.
    A. Noullez et al., J. Fluid Mech. 339:287 (1997); R. Camussi, D. Barbagallo, G. Guj, and F. Stella, Phys. Fluids 8:1181 (1996); R. Camussi and R. Benzi, Phys. Fluids 9:257 (1997).Google Scholar
  5. 5.
    B. Dhruva, Y. Tsuji, and K. R. Sreenivasan, Phys. Rev. E 56:R4928 (1997).Google Scholar
  6. 6.
    O. N. Boratav and R. B. Pelz, Phys. Fluids 9:1400 (1997); S. Chen, K. R. Sreenivasan, M. Nelkin, and N. Cao, Phys. Rev. Lett. 79:2253 (1997).Google Scholar
  7. 7.
    S. Grossmann, D. Lohse, and A. Reeh, Phys. Fluids 9:3817 (1997).Google Scholar
  8. 8.
    V. L'vov, E. Podivilow, and I. Procaccia, Phys. Rev. Lett. 79:2050 (1997).Google Scholar
  9. 9.
    M. Ould-Rouis, R. A. Antonia, Y. Zhu, and F. Anselmet, Phys. Rev. Lett. 77:2222 (1996).Google Scholar
  10. 10.
    R. Benzi et al., Phys. Rev. E 48:R29 (1993); R. Benzi, S. Ciliberto, C. Baudet, and G. R. Chavarria, Physica D 80:385 (1995); R. Benzi et al., Physica D 96:162 (1996); G. Stolovitzky and K. R. Sreenivasan, Phys. Rev. E 48:R33 (1993); M. Briscolini, P. Santangelo, S. Succi, and R. Benzi, Phys. Rev. E 50:R1745 (1994); Ch. Meneveau, Phys. Rev. E 54:3657 (1996).Google Scholar
  11. 11.
    S. Grossmann, D. Lohse, and A. Reeh, Phys. Rev. E 56:5473 (1997).Google Scholar
  12. 12.
    G. K. Batchelor, Proc. Camb. Philos. Soc. 47:359 (1951); H. Effinger and S. Grossmann, Z. Phys. B 66:289 (1987); D. Lohse and A. Müller-Groeling, Phys. Rev. Lett. 54:395 (1996).Google Scholar
  13. 13.
    Z. S. She and E. Leveque, Phys. Rev. Lett. 72:336 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Siegfried Grossmann
    • 1
  • Detlef Lohse
    • 1
  • Achim Reeh
    • 1
  1. 1.Fachbereich Physik der Universität MarburgMarburgGermany;

Personalised recommendations