Journal of Statistical Physics

, Volume 93, Issue 3–4, pp 501–510 | Cite as

Ostwald Ripening in Two Dimensions: Treatment with Pairwise Interactions

  • Boris Levitan
  • Eytan Domany

Abstract

Ostwald ripening is the last stage of the evolution of a system with two coexisting phases. It is a relatively simple nonequilibrium phenomenon with several interesting features. For example, as the system coarsens it goes through a scaling state, one which looks the same (up to an overall length scale, which grows) at all times. The dynamics of the problem can be mapped, in two dimensions, onto an evolving Coulomb system. In this work we present a brief summary of a novel theoretical approach to this problem, based on an analytic derivation (using a mean-field approach) of an effective two-body interaction between droplets of the minority phase. The resulting interacting many-body dynamics is solved by a very efficient numerical algorithm, allowing us to follow the evolution of more than 106 droplets on a simple workstation. The results are in excellent agreement with recent experiments.

Ostwald ripening scaling state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. Ostwald, Z. Phys. Chem. 34:495 (1900).Google Scholar
  2. 2.
    E. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19:35 (1961); E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon Press Oxford, 1982), Vol. 432.Google Scholar
  3. 3.
    T. M. Rogers and R. C. Desai, Phys. Rev. B 39:11956 (1989).Google Scholar
  4. 4.
    N. Masbaum, J. Phys. I France 5:1143 (1995).Google Scholar
  5. 6.
    T. Imaeda and K. Kawasaki, Physica A 164:335 (1990).Google Scholar
  6. 7.
    N. Akaiwa and P. W. Voorhees, Phys. Rev. E 49:3860 (1994).Google Scholar
  7. 8.
    N. Akaiwa and D. I. Meiron, Phys. Rev. E 51:5408 (1995).Google Scholar
  8. 9.
    C. Wagner, Z. Electrochem. 65:581 (1961).Google Scholar
  9. 10.
    J. A. Marqusee, J. Chem. Phys. 81:976 (1984).Google Scholar
  10. 11.
    M. Marder, Phys. Rev. A 36:858 (1987).Google Scholar
  11. 12.
    Q. Zheng and J. D. Gunton, Phys. Rev. A 39:4848 (1989).Google Scholar
  12. 14.
    O. Krichevsky and J. Stavans, Phys. Rev. Lett. 70:1473 (1993); Phys. Rev. E 52:1818 (1995).Google Scholar
  13. 15.
    B. Levitan and E. Domany, Phys. Rev. E. 57:1895 (1998).Google Scholar
  14. 16.
    C. W. J. Beenakker and J. Ross, J. Chem. Phys. 83:4710 (1985).Google Scholar
  15. 17.
    C. W. J. Beenakker, Phys. Rev. A 33:4482 (1986).Google Scholar
  16. 18.
    M. Marder, Phys. Rev. Lett. 55:2953 (1985).Google Scholar
  17. 19.
    J. A. Marqusee and J. Ross, J. Chem. Phys. 80:536 (1984).Google Scholar
  18. 21.
    J. H. Yao, K. R. Elder, H. Guo, and M. Grant, Phys. Rev. B 47:14, 110 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Boris Levitan
    • 1
  • Eytan Domany
    • 1
  1. 1.Department of Physics of Complex SystemsWeizmann InstituteRehovotIsrael;

Personalised recommendations