Journal of Statistical Physics

, Volume 93, Issue 3–4, pp 449–465 | Cite as

Convection and Diffusion in Patterns in Oscillated Granular Media

  • C. Bizon
  • M. D. Shattuck
  • John R. de Bruyn
  • J. B. Swift
  • W. D. McCormick
  • Harry L. Swinney

Abstract

Motions of individual particles within the stripe and square patterns formed in oscillated granular media are studied using numerical simulations. Our event-driven molecular dynamics simulations yield standing wave patterns in good accord with those observed in experiments at the same frequency and acceleration amplitude. The patterns are subharmonic and so return to their initial macroscopic state after two external cycles. However, simulations reveal that individual particles do not return to their initial position. In addition to diffusive motion, an organized flow of particles within the patterns is found; associated with each peak and each valley of the pattern is a pair of counterrotating convection rolls. The diffusion is anisotropic: transport perpendicular to stripes is enhanced over that parallel to stripes. This enhancement is computed as a function of the layer depth, acceleration amplitude, frequency, and coefficient of restitution of the particles, and is attributed to the effect of the advective motion. Velocity distributions, granular temperature, and the dependence of the diffusion coefficient parallel to the stripes on the average granular temperature are studied.

Granular media pattern convection enhanced diffusion granular temperature numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Douady, J. Fluid Mech. 221:383 (1990).Google Scholar
  2. 2.
    S. Fauve, K. Kumar, and C. Laroche, Phys. Rev. Lett. 68:3160 (1992).Google Scholar
  3. 3.
    W. S. Edwards and S. Fauve, J. Fluid Mech. 278:123 (1994).Google Scholar
  4. 4.
    F. Melo, P. Umbanhowar, and H. L. Swinney, Phys. Rev. Lett. 72:172 (1994).Google Scholar
  5. 5.
    F. Melo, P. B. Umbanhowar, and H. L. Swinney, Phys. Rev. Lett. 75:3838 (1995).Google Scholar
  6. 6.
    P. Umbanhowar, F. Melo, and H. L. Swinney, Nature 382:793 (1996).Google Scholar
  7. 7.
    E. Clément, L. Vanel, J. Rajchenbach, and J. Duran, Phys. Rev. E. 53:2972 (1996).Google Scholar
  8. 8.
    S. Luding, E. Clément, J. Rajchenbach, and J. Duran, Europhys. Lett. 36:247 (1996).Google Scholar
  9. 9.
    C. Bizon, M. D. Shattuck, J. B. Swift, W. D. McCormick, and H. L. Swinney, Phys. Rev. Lett. 80:57 (1998).Google Scholar
  10. 10.
    Y. Du, H. Li, and L. P. Kadanoff, Phys. Rev. Lett. 74:1268 (1995).Google Scholar
  11. 11.
    J. T. Jenkins and S. B. Savage, J. Fluid Mech. 130:187 (1983).Google Scholar
  12. 12.
    C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, J. Fluid Mech. 140:223 (1983).Google Scholar
  13. 13.
    J. T. Jenkins and M. W. Richman, Arch. Rat. Mech. Anal. 87:355 (1985).Google Scholar
  14. 14.
    N. Sela, I. Goldhirsch, and S. H. Noskowicz, Phys. Fluids 8:2337 (1996).Google Scholar
  15. 15.
    C. S. Campbell, Annu. Rev. Fluid Mech. 2:57 (1990).Google Scholar
  16. 16.
    O. R. Walton, in Particulate Two-Phase Flow, M. C. Roco, ed. (Butterworth-Heinemann, Boston, 1993), pp. 884–911.Google Scholar
  17. 17.
    S. McNamara and W. R. Young, Phys. Fluids A 4:496 (1992).Google Scholar
  18. 18.
    P. B. Umbanhowar, F. Melo, and H. L. Swinney, to be published.Google Scholar
  19. 19.
    K. M. Aoki and T. Akiyama, Phys. Rev. Lett. 77:4166 (1996); C. Bizon, M. D. Shattuck, P. B. Umbanhowar, J. T. Newman, J. B. Swift, W. D. McCormick, and Harry L. Swinney, ibid. 79:4713 (1997); K. M. Aoki and T. Akiyama, ibid. 79:4714 (1997).Google Scholar
  20. 20.
    H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Physics Today 49:32 (1996).Google Scholar
  21. 21.
    H. K. Pak, E. Van Doorn, and R. P. Behringer, Phys. Rev. Lett. 74:4643 (1995).Google Scholar
  22. 22.
    E. E. Ehrichs, H. M. Jaeger, G. S. Karczmar, J. B. Knight, V. Yu. Kuperman, and S. R. Nagel, Science 267:1632 (1995).Google Scholar
  23. 23.
    T. H. Solomon and J. P. Gollub, Phys. Fluids 31:1372 (1988).Google Scholar
  24. 24.
    M. N. Rosenbluth, H. L. Berk, I. Doxas, and W. Horton, Phys. Fluids 30:2636 (1987).Google Scholar
  25. 25.
    B. I. Shraiman, Phys. Rev. A 36:261 (1987).Google Scholar
  26. 26.
    J. T. Jenkins and M. W. Richman, J. Fluid Mech. 192:313 (1988).Google Scholar
  27. 27.
    M. W. Richman, J. Rheology 33:1293 (1989).Google Scholar
  28. 28.
    G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Tech. 87:211 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • C. Bizon
    • 1
  • M. D. Shattuck
    • 1
  • John R. de Bruyn
    • 1
  • J. B. Swift
    • 1
  • W. D. McCormick
    • 1
  • Harry L. Swinney
    • 1
  1. 1.Center for Nonlinear Dynamics and Department of PhysicsUniversity of TexasAustin
  2. 2.Department of Physics and Physical OceanographyMemorial University of NewfoundlandSt. John'sCanada

Personalised recommendations