Journal of Statistical Physics

, Volume 93, Issue 5–6, pp 1143–1167

Domain of Definition of Levermore's Five-Moment System

  • Michael Junk
Article
  • 142 Downloads

Abstract

The simplest system in Levermore's moment hierarchy involving moments higher than second order is the five-moment closure. It is obtained by taking velocity moments of the one-dimensional Boltzmann equation under the assumption that the velocity distribution is a maximum-entropy function. The moment vectors for which a maximum-entropy function exists consequently make up the domain of definition of the system. The aim of this article is a complete characterization of the structure of the domain of definition and the connected maximum-entropy problem. The space-homogeneous case of the equation and numerical aspects are also addressed.

Levermore's moment closure maximum entropy moment realizability reduced Hamburger moment problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. I. Akhiezer and M. Krein, Some Questions in the Theory of Moments, Transl. of Math. Monographs, Vol. 2, 1962.Google Scholar
  2. 2.
    N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (Oliver & Boyd, 1965).Google Scholar
  3. 3.
    W. Dreyer, Maximisation of the entropy in non-equilibrium, J. Phys. A: Math. Gen. 20:6505–6517 (1987).Google Scholar
  4. 4.
    A. Kociszewski, The existence conditions for maximum entropy distributions, having prescribed the first three moments, J. Phys. A: Math. Gen. 19:L823–L827 (1986).Google Scholar
  5. 5.
    P. Le Tallec and J. P. Perlat, Numerical analysis of Levermore's moment system, Rapport de recherche No. 3124, INRIA Rocquencourt, 1997.Google Scholar
  6. 6.
    C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys. 83:1021–1065 (1996).Google Scholar
  7. 7.
    A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Springer, 1984).Google Scholar
  8. 8.
    L. R. Mead and N. Papanicolaou, Maximum entropy in the problem of moments, J. Math. Phys. 25:2404–2417 (1984).Google Scholar
  9. 9.
    I. Müller and T. Ruggeri, Extended Thermodynamics (Springer Verlag, New York, 1993).Google Scholar
  10. 10.
    S. Ihara, Information Theory for Continuous Systems (World Scientific, 1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Michael Junk
    • 1
  1. 1.Institut für Techno- und WirtschaftsmathematikKaiserslauternGermany

Personalised recommendations