Journal of Statistical Physics

, Volume 115, Issue 5–6, pp 1231–1250 | Cite as

Universal Scaling Behavior of Directed Percolation Around the Upper Critical Dimension

  • S. Lübeck
  • R. D. Willmann


In this work we consider the steady state scaling behavior of directed percolation around the upper critical dimension. In particular we determine numerically the order parameter, its fluctuations as well as the susceptibility as a function of the control parameter and the conjugated field. Additionally to the universal scaling functions, several universal amplitude combinations are considered. We compare our results with those of a renormalization group approach.

absorbing phase transition directed percolation universal scaling behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. E. Stanley, Rev. Modern Phys. 71:S358(1999).Google Scholar
  2. 2.
    E. A. Guggenheim, J. Chem. Phys. 13:253(1945).Google Scholar
  3. 3.
    S. Milošević and H. E. Stanley, Phys. Rev. B 6:1002(1972).Google Scholar
  4. 4.
    V. Privman, P. C. Hohenberg, and A. Aharony, in Universal Critical-Point Amplitude Relations in Phase Transitions and Critical Phenomena, Vol. 14, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1991).Google Scholar
  5. 5.
    K. G. Wilson, Phys. Rev. B 4:3174(1971).Google Scholar
  6. 6.
    K. G. Wilson, Phys. Rev. B 4:3184(1971).Google Scholar
  7. 7.
    F. J. Wegner and E. K. Riedel, Phys. Rev. B 7:248(1973).Google Scholar
  8. 8.
    K. G. Wilson and J. Kogut, Phys. Rep. C 12:75(1974).Google Scholar
  9. 9.
    H. Hinrichsen, Adv. Phys. 49:815(2000).Google Scholar
  10. 10.
    H. K. Janssen, Z. Phys. B 42:151(1981).Google Scholar
  11. 11.
    P. Grassberger, Z. Phys. B 47:365(1982).Google Scholar
  12. 12.
    M. Rossi, R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 85:1803(2000).Google Scholar
  13. 13.
    J. W. Essam, J. Phys. A 22:4927(1989).Google Scholar
  14. 14.
    J. L. Cardy and U. C. Täuber, Phys. Rev. Lett. 13:4780(1996).Google Scholar
  15. 15.
    I. Jensen, Phys. Rev. Lett. 70:1465(1993).Google Scholar
  16. 16.
    I. Jensen and R. Dickman, Phys. Rev. E 48:1710(1993).Google Scholar
  17. 17.
    S. Lübeck and R. D. Willmann, J. Phys. A 35:10205(2002).Google Scholar
  18. 18.
    M. A. Muñoz, G. Grinstein, R. Dickman, and R. Livi, Phys. Rev. Lett. 76:451(1996).Google Scholar
  19. 19.
    F. van Wijland, Phys. Rev. Lett. 89:190602(2002).Google Scholar
  20. 20.
    P. Grassberger and A. de la Torre, Ann. Phys. (N.Y.) 122:373(1979).Google Scholar
  21. 21.
    P. Pfeuty and G. Toulouse, Introduction to the Renormalization Group and Critical Phenomena (Wiley, Chichester, 1994).Google Scholar
  22. 22.
    H. K. Janssen, Ü. Kutbay, and K. Oerding, J. Phys. A 32:1809(1999).Google Scholar
  23. 23.
    H. K. Janssen and O. Stenull, Phys. Rev. E 69:016125(2004).Google Scholar
  24. 24.
    P. Grassberger, Phys. Rev. E 56:3682(1997).Google Scholar
  25. 25.
    P. Grassberger, R. Hegger, and L. Schäfer, J. Phys. A 27:7265(1994).Google Scholar
  26. 26.
    S. Lübeck, Phys. Rev. E 58:2957(1998).Google Scholar
  27. 27.
    D. V. Ktitarev, S. Lübeck, P. Grassberger, and V. B. Priezzhev, Phys. Rev. E 61:81(2000).Google Scholar
  28. 28.
    L. Roters, S. Lübeck, and K. D. Usadel, Phys. Rev. E 66:069901(2002).Google Scholar
  29. 29.
    P. Grassberger, Phys. Rev. E 67:036101(2003).Google Scholar
  30. 30.
    S. Lübeck and P. C. Heger, Phys. Rev. Lett. 90:230601(2003).Google Scholar
  31. 31.
    A. A. Fedorenko and S. Stepanow, Phys. Rev. E 67:057104(2003).Google Scholar
  32. 32.
    H. K. Janssen and O. Stenull, Phys. Rev. E 68:036131(2003).Google Scholar
  33. 33.
    O. Stenull and H. K. Janssen, Phys. Rev. E 68:036129(2003).Google Scholar
  34. 34.
    E. Domany and W. Kinzel, Phys. Rev. Lett. 53:311(1984).Google Scholar
  35. 35.
    A. Y. Tretyakov and N. Inui, J. Phys. A 28:3985(1995).Google Scholar
  36. 36.
    P. Grassberger and Y.-C. Zhang, Physica A 224:169(1996).Google Scholar
  37. 37.
    V. Privman and M. E. Fisher, Phys. Rev. B 30:322(1984).Google Scholar
  38. 38.
    H. Mori and K. J. Mc Neil, Prog. Theor. Phys. 57:770(1977).Google Scholar
  39. 39.
    P. Schofield, Phys. Rev. Lett. 22:606(1969).Google Scholar
  40. 40.
    B. D. Josephson, J. Phys. C 2:1113(1969).Google Scholar
  41. 41.
    S. P. Obukhov, Physica A 101:145(1980).Google Scholar
  42. 42.
    J. L. Cardy and R. L. Sugar, J. Phys. A 13:L423(1980).Google Scholar
  43. 43.
    A. I. Larkin and D. E. Khmel'nitski\({\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{1} }\), JETP 29, 1123(1969).Google Scholar
  44. 44.
    A. Aharony, Phys. Rev. B 8:3363(1973).Google Scholar
  45. 45.
    J. A. Griffiths, J. D. Litster, and A. Linz, Phys. Rev. Lett. 38:251(1977).Google Scholar
  46. 46.
    J. Bringmann, R. Courths, and H. J. Guggenheim, Phys. Rev. Lett. 40:1286(1978).Google Scholar
  47. 47.
    N. Aktekin, J. Stat. Phys. 104:1397(2001).Google Scholar
  48. 48.
    K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 1997).Google Scholar
  49. 49.
    I. Jensen, J. Phys. A 32:5233(1999).Google Scholar
  50. 50.
    C. A. Voigt and R. M. Ziff, Phys. Rev. E 56:R6241(1997).Google Scholar
  51. 51.
    I. Jensen, Phys. Rev. A 45:R563(1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • S. Lübeck
    • 1
    • 2
  • R. D. Willmann
    • 3
  1. 1.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Institut für Theoretische PhysikUniversität Duisburg-EssenDuisburgGermany
  3. 3.Institut für FestkörperforschungJülichGermany

Personalised recommendations