Journal of Statistical Physics

, Volume 115, Issue 3–4, pp 749–803 | Cite as

Fluctuations of the One-Dimensional Polynuclear Growth Model in Half-Space

  • T. Sasamoto
  • T. Imamura


We consider the multi-point equal time height fluctuations of the one-dimensional polynuclear growth model in half-space. For special values of the nucleation rate at the origin, the multi-layer version of the model is reduced to a process with a determinantal weight, for which the asymptotics can be analyzed. In the scaling limit, the fluctuations near the origin are shown to be equivalent to those of the largest eigenvalue of the orthogonal/symplectic to unitary transition ensemble at soft edge in random matrix theory.

polynuclear growth KPZ universality class random matrices Tracy–Widom distribution Airy process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Krug and H. Spohn, Kinetic roughening of growing interfaces, in Solids Far from Equilibrium: Growth, Morphology, and Defects, C. Godrèche, ed. (1992), pp. 479–582.Google Scholar
  2. 2.
    P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge, 1998).Google Scholar
  3. 3.
    M. Kardar, G. Parisi, and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56:889–892 (1986).Google Scholar
  4. 4.
    L.-H. Gwa and H. Spohn, Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys. Rev. Lett. 68:725–728 (1992).Google Scholar
  5. 5.
    D. Kim, Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type growth model, Phys. Rev. E 52:3512–3524 (1995).Google Scholar
  6. 6.
    K. Johansson, Shape fluctuations and random matrices, Commun. Math. Phys. 209: 437–476 (2000).Google Scholar
  7. 7.
    M. Prähofer and H. Spohn, Universal distributions for growth processes in 1+1 dimensions and random matrices, Phys. Rev. Lett 84:4882–4885 (2000).Google Scholar
  8. 8.
    M. Prähofer and H. Spohn, Statistical self-similarity of one-dimensional growth processes, Physica A 279:342–352 (2000).Google Scholar
  9. 9.
    J. Baik and E. M. Rains, Limiting distributions for a polynuclear growth model with external sources, J. Stat. Phys 100:523–541 (2000).Google Scholar
  10. 10.
    J. Gravner, C. A. Tracy, and H. Widom, Limit theorems for height fluctuations in a class of discrete space and time growth models, J. Stat. Phys. 102:1085–1132 (2001).Google Scholar
  11. 11.
    J. Gravner, C. A. Tracy, and H. Widom, A growth model in a random environment, Ann. Probab. 30:1340–1369 (2002).Google Scholar
  12. 12.
    J. Gravner, C. A. Tracy, and H. Widom, Fluctuations in the composite regime of a disordered growth model, Commun. Math. Phys. 229:433–458 (2002).Google Scholar
  13. 13.
    M. Prähofer and H. Spohn, Current fluctuations for the totally asymmetric simple exclusion process, in In and Out of Equilibrium, V. Sidoravicius, ed., Progress in Probability, Vol. 51 (2002), pp. 185–204.Google Scholar
  14. 14.
    M. Prähofer and H. Spohn, Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys. 108:1071–1106 (2002).Google Scholar
  15. 15.
    M. Prähofer and H. Spohn, Exact scaling functions for one-dimensional stationary KPZ growth, cond-mat/0212519.Google Scholar
  16. 16.
    J. Baik, P. A. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence in a random permutation, J. Amer. Math. Soc. 12:1119–1178 (1999).Google Scholar
  17. 17.
    D. Aldous and P. Diaconis, Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. 36:413–432 (1999).Google Scholar
  18. 18.
    K. Johansson, Non-intersecting paths, random tilings, and random matrices, Probab. Theory Related Fields 123:225–280 (2002).Google Scholar
  19. 19.
    K. Johansson, Discrete polynuclear growth and determinantal processes, Commun. Math. Phys. 242:277–329 (2003).Google Scholar
  20. 20.
    C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Commun. Math. Phys. 159:151–174 (1994).Google Scholar
  21. 21.
    M. L. Mehta, Random Matrices, 2nd ed. (Academic, 1991).Google Scholar
  22. 22.
    C. A. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Commun. Math. Phys. 177:727–754 (1996).Google Scholar
  23. 23.
    J. Baik and E. M. Rains, Algebraic aspects of increasing subsequences, Duke Math. J. 109:1–65 (2001).Google Scholar
  24. 24.
    J. Baik and E. M. Rains, The asymptotics of monotone subsequences of involutions, Duke Math. J. 109:205–281 (2001).Google Scholar
  25. 25.
    J. Baik and E. M. Rains, Symmetrized random permutations, in Random Matrix Models and Their Applications, P. M. Bleher and A. R. Its, eds. (2001), pp. 1–29.Google Scholar
  26. 26.
    F. J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys 3:1191–1198 (1962).Google Scholar
  27. 27.
    K. Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. Math. 153:259–296 (2001).Google Scholar
  28. 28.
    P. J. Forrester, T. Nagao, and G. Honner, Correlations for the orthogonal-unitary and symplectic transitions at the hard and soft edges, Nucl. Phys. B 553:601–643 (1999).Google Scholar
  29. 29.
    B. Lindström, On the vector representations of induced matroids, Bull. London Math. Soc. 5:85–90 (1973).Google Scholar
  30. 30.
    I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58:300–321 (1985).Google Scholar
  31. 31.
    I. Gessel and G. Viennot, Determinants, paths, and plane partitions, preprint (1989).Google Scholar
  32. 32.
    J. R. Stembridge, Nonintersecting paths, pfaffians, and plane partitions, Adv. Math. 83: 96–131 (1990).Google Scholar
  33. 33.
    S. Karlin and L. McGregor, Coincidence properties of birth and death processes, Pacific J. 9:1109–1140 (1959).Google Scholar
  34. 34.
    S. Karlin and L. McGregor, Coincidence probabilities, Pacific J. 9:1141–1164 (1959).Google Scholar
  35. 35.
    J. Baik, Random vicious walks and random matrices, Comm. Pure Appl. Math. 53: 1385–1410 (2000).Google Scholar
  36. 36.
    T. Nagao and P. J. Forrester, Vicious random walkers and a discretization of Gaussian random matrix ensembles, Nucl. Phys. B 620:551–565 (2002).Google Scholar
  37. 37.
    T. Nagao, M. Katori, and H. Tanemura, Dynamical correlations among vicious random walkers, Phys. Lett. A 307:29–35 (2003).Google Scholar
  38. 38.
    C. A. Tracy and H. Widom, Correlation functions, cluster functions, and spacing distributions for random matrices, J. Stat. Phys. 92:809–835 (1998).Google Scholar
  39. 39.
    N. G. de Bruijn, On some multiple integrals involving determinants, J. Indian Math. Soc. 19:133–151 (1955).Google Scholar
  40. 40.
    B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model (Harvard University Press, 1973).Google Scholar
  41. 41.
    H. Rost, Non-equilibrium behavior of a many particle process: Density profile and local equilibria, Z. Warsch. Verw. Gebiete 58:41–53 (1981).Google Scholar
  42. 42.
    A. M. S. Macâedo, Universal parametric correlations at the soft edge of spectrum of random matrix ensembles, Europhys. Lett. 26:641–646 (1994).Google Scholar
  43. 43.
    T. Nagao and P. J. Forrester, Multilevel dynamical correlation functions for Dyson's Brownian motion model of random matrices, Phys. Lett. A 247:42–46 (1998).Google Scholar
  44. 44.
    C. A. Tracy and H. Widom, System of differential equations for the Airy process, Electron. Comm. Probab. 8:93–98 (2003).Google Scholar
  45. 45.
    C. A. Tracy and H. Widom, Differential equations for Dyson processes, math.PR/ 0309082.Google Scholar
  46. 46.
    M. Adler and P. van Moerbeke, A PDE for the joint distributions of the Airy process, math.PR/0302329.Google Scholar
  47. 47.
    M. Katori and T. Tanemura, in preparation.Google Scholar
  48. 48.
    T. Nagao and M. Wadati, Correlation functions of random matrix ensembles related to classical orthogonal polynomials, J. Phys. Soc. Japan 60:3298–3322 (1991).Google Scholar
  49. 49.
    T. Nagao and M. Wadati, Correlation functions of random matrix ensembles related to classical orthogonal polynomials II, J. Phys. Soc. Japan 61:78–88 (1992).Google Scholar
  50. 50.
    T. Nagao and M. Wadati, Correlation functions of random matrix ensembles related to classical orthogonal polynomials III, J. Phys. Soc. Japan 61:1910–1918 (1992).Google Scholar
  51. 51.
    W. H. Burge, Four correspondences between graphs and generalized Young tableaux, J. Combin. Theory Ser. A 17:12–30 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • T. Sasamoto
    • 1
  • T. Imamura
    • 2
  1. 1.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Physics, Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations