Advertisement

Journal of Statistical Physics

, Volume 115, Issue 1–2, pp 31–46 | Cite as

Dynamical Systems, Topology, and Conductivity in Normal Metals

  • A. Ya. Maltsev
  • S. P. Novikov
Article

Abstract

We present here a complete description of all asymptotic regimes of conductivity in the so-called “Geometric Strong Magnetic Field limit” in the 3D single crystal normal metals with topologically complicated Fermi surfaces. In particular, new observable integer-valued characteristics of conductivity of topological origin were introduced by the present authors a few years ago; they are based on the notion of Topological Resonance which plays a basic role in the total picture. Our investigation is based on the study of dynamical systems on Fermi surfaces for the semi-classical motion of electrons in a magnetic field.

Normal metals strong magnetic fields conductivity topology Fermi surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Sov. Phys. JETP 4:41(1957).Google Scholar
  2. 2.
    I. M. Lifshitz and V. G. Peschansky, Soy. Phys. JETP 8:875(1959).Google Scholar
  3. 3.
    I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 11:137(1960).Google Scholar
  4. 4.
    Yu. P. Gaidukov, Sov. Phys. JETP 10:913(1960).Google Scholar
  5. 5.
    I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 2:831(1960).Google Scholar
  6. 6.
    I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 5:411(1962).Google Scholar
  7. 7.
    C. Kittel, Quantum Theory of Solids (Wiley, New York, London, 1963).Google Scholar
  8. 8.
    I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971). [Translated: Consultants Bureau, New York, 1973.]Google Scholar
  9. 9.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972).Google Scholar
  10. 10.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987). [Translated: North-Holland, Amsterdam, 1998.] 11. S. P. Novikov, Russian Math. Surveys 37:1(1982).Google Scholar
  11. 11.
    S.P. Novikov, Russian Math.Surveys 37 :1 (1982).Google Scholar
  12. 12.
    A. V. Zorich, Russian Math. Surveys 39:287(1984).Google Scholar
  13. 13.
    S. P. Novikov, Proc. Steklov Inst. Math. 1(1986).Google Scholar
  14. 14.
    V. I. Arnold, Functional Analysis and its Appilcations 25:2(1991).Google Scholar
  15. 15.
    Ya. G. Sinai and K. M. Khanin, Functional Analysis and Its Applications 26:3(1992).Google Scholar
  16. 16.
    I. A. Dynnikov, Russian Math. Surveys 57:172(1992).Google Scholar
  17. 17.
    I. A. Dynnikov, Russian Math. Surveys 58 (1993).Google Scholar
  18. 18.
    I. A. Dynnikov, A proof of Novikov's conjecture on semiclassical motion of electron, Math. Notes 53:495(1993).Google Scholar
  19. 19.
    S. P. Tsarev, Private communication (1992–93).Google Scholar
  20. 20.
    S. P. Novikov, Quasiperiodic structures in topology, in Proc. Conference “Topological Methods in Mathematics,” dedicated to the 60th birthday of J. Milnor, June 15–22, S. U. N. Y. Stony Brook, 1991 (Perish, Houston, TX, 1993), pp. 223-233.Google Scholar
  21. 21.
    A. V. Zorich, Proc. “Geometric Study of Foliations” (Tokyo, November 1993), T. Mizutani, et al., eds. (World Scientific, Singapore, 1994), pp. 479–498.Google Scholar
  22. 22.
    S. P. Novikov, Proc. Conf. of Geometry, December 15–26, 1993 (Tel Aviv University, 1995).Google Scholar
  23. 23.
    S. P. Novikov and A. Ya. Maltsev, Zh. ETP Lett. 63:855(1996).Google Scholar
  24. 24.
    I. A. Dynnikov, Surfaces in 3-Torus: Geometry of plane sections, Proc. of ECM2, BuDA, (1996).Google Scholar
  25. 25.
    I. A. Dynnikov, Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples, in Solitons, Geometry, and Topology: On the Crossroad, V. M. Buchstaber and S. P. Novikov, eds., American Mathematical Society Translations, Series 2, Advances in the Mathematical Sciences, Vol. 179 (1997).Google Scholar
  26. 26.
    I. A. Dynnikov and A. Ya. Maltsev, ZhETP 85:205(1997).Google Scholar
  27. 27.
    A. Ya. Maltsev, ZhETP 85:934(1997).Google Scholar
  28. 28.
    S. P. Novikov and A. Ya. Maltsev, Physics-Uspekhi 41:231(1998).Google Scholar
  29. 29.
    I. A. Dynnikov, Russian Math. Surveys 54:21(1999).Google Scholar
  30. 30.
    S. P. Novikov, Russian Math. Surveys 54:1031(1999).Google Scholar
  31. 31.
    R. D. Leo, SIAM Journal on Applied Dynamical Systems 2:517–545 (2003).Google Scholar
  32. 32.
    A. Ya. Maltsev and S. P. Novikov, ArXiv: math-ph/0301033, Bulletin of Braz. Math. Society, New Series 34:171–210 (2003).Google Scholar
  33. 33.
    A. Ya. Maltsev and S. P. Novikov, ArXiv: cond-mat/0304471.Google Scholar
  34. 34.
    A. Ya. Maltsev, Arxiv: cond-mat/0302014.Google Scholar
  35. 35.
    G. Panati, H. Spohn, and S. Teufel, Phys. Rev. Lett. 88:250405(2002).Google Scholar
  36. 36.
    G. Panati, H. Spohn, and S. Teufel, ArXiv: math-ph/0212041.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. Ya. Maltsev
    • 1
  • S. P. Novikov
    • 1
    • 2
  1. 1.L. D. Landau Institute for Theoretical PhysicsMoscow
  2. 2.IPSTUniversity of MarylandCollege Park

Personalised recommendations