Advertisement

Journal of Statistical Physics

, Volume 115, Issue 1–2, pp 57–89 | Cite as

Ultracold Atomic Fermi–Bose Mixtures in Bichromatic Optical Dipole Traps: A Novel Route to Study Fermion Superfluidity

  • Roberto Onofrio
  • Carlo Presilla
Article

Abstract

The study of low density, ultracold atomic Fermi gases is a promising avenue to understand fermion superfluidity from first principles. One technique currently used to bring Fermi gases in the degenerate regime is sympathetic cooling through a reservoir made of an ultracold Bose gas. We discuss a proposal for trapping and cooling of two-species Fermi–Bose mixtures into optical dipole traps made from combinations of laser beams having two different wavelengths. In these bichromatic traps it is possible, by a proper choice of the relative laser powers, to selectively trap the two species in such a way that fermions experience a stronger confinement than bosons. As a consequence, a deep Fermi degeneracy can be reached having at the same time a softer degenerate regime for the Bose gas. This leads to an increase in the sympathetic cooling efficiency and allows for higher precision thermometry of the Fermi–Bose mixture.

Bose and Fermi degenerate gases superfluidity and superconductivity evaporative cooling sympathetic cooling nonequilibrium statistical mechanics Bose-Fermi mixtures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I, Phys. Rev. 122:345(1961); Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II,Phys. Rev. 124:246(1961).Google Scholar
  2. 2.
    D. R. Tilley and J. Tilley, Superfluidity and Superconductivity (Institute of Physics, Bristol and Philadelphia, 1996).Google Scholar
  3. 3.
    S. Chu, The manipulation of neutral particles, Rev. Mod. Phys. 70:685(1998).Google Scholar
  4. 4.
    C. N. Cohen-Tannouji, Manipulating atoms with photons, Rev. Mod. Phys. 70:707(1998).Google Scholar
  5. 5.
    W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70:721(1998).Google Scholar
  6. 6.
    W. Ketterle and N. J. Van Druten, Evaporative cooling of trapped atoms, in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds., Vol. 37 (Academic Press, San Diego, 1996), p. 181.Google Scholar
  7. 7.
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269:198(1995).Google Scholar
  8. 8.
    K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75:3969(1995).Google Scholar
  9. 9.
    C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75:1687(1995); C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. ibidem 79:1170(1997).Google Scholar
  10. 10.
    Bose-Einstein Condensates and Atom Lasers, C. R. Acad. Sci. Paris, t. 2, Série IV, No. 3 (2001), Special issue, A. Aspect and J. Dalibard, eds.Google Scholar
  11. 11.
    C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002).Google Scholar
  12. 12.
    L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford Science Publications, Oxford, 2003).Google Scholar
  13. 13.
    M. R. Matthews, B. P. Anderson, P. C. Kaljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose-Einstein condensate, Phys. Rev. Lett. 83:2498(1999).Google Scholar
  14. 14.
    K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett. 84:806(2000).Google Scholar
  15. 15.
    J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates, Science 292:476(2001).Google Scholar
  16. 16.
    O. M. Maragó, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, and C. J. Foot, Observation of the scissor mode and evidence for superfluidity of a trapped Bose- Einstein condensed gas, Phys. Rev. Lett. 84:2059(2000).Google Scholar
  17. 17.
    C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, Evidence for a critical velocity in a Bose-Einstein condensed gas, Phys. Rev. Lett. 84:2502(1999).Google Scholar
  18. 18.
    R. Onofrio, C. Raman, J. M. Vogels, J. Abo-Shaeer, A. P. Chikkatur, and W. Ketterle, Observation of a superfluid flow in a Bose-Einstein condensed gas, Phys. Rev. Lett. 85:2228(2000).Google Scholar
  19. 19.
    A. L. Fetter and A. A. Svidzinsky, Vortices in a trapped dilute Bose-Einstein condensate, J. Phys. Condens. Matter 13:R135(2001).Google Scholar
  20. 20.
    A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73:307(2001).Google Scholar
  21. 21.
    L. P. Pitaevskii and S. Stringari, The quest for superfluidity in Fermi gases, Science 298:2144(2001).Google Scholar
  22. 22.
    L. P. Gor'kov and T. K. Melik-Barkhudarov, Contribution to the theory of superfluidity in an imperfect Fermi gas, Zh. Eksp. Teor. Fiz 40:1452(1961) [Sov. Phys. JETP 13:1018 (1961)].Google Scholar
  23. 23.
    H. T. C. Stoof, M. Houbiers, C. A. Sackett, and R. G. Hulet, Superfluidity of spin-polarized Li-6, Phys. Rev. Lett. 76:10(1996).Google Scholar
  24. 24.
    R. Onofrio and C. Presilla, Reaching Fermi degeneracy in two-species optical dipole traps, Phys. Rev. Lett. 89:100401(2002).Google Scholar
  25. 25.
    B. DeMarco and D. S. Jin, Onset of Fermi degeneracy in a trapped atomic gas, Science 285:1703(1999).Google Scholar
  26. 26.
    E. Timmermans and R. Coté, Superfluidity in sympathetic cooling with atomic Bose-Einstein condensates, Phys. Rev. Lett. 80:3419(1998).Google Scholar
  27. 27.
    A. G. Truscott, K. E Strecker, W. I. McAlexander, G. B. Partridge, and R. G. Hulet, Observation of Fermi pressure in a gas of trapped atoms, Science 291:2570(2001).Google Scholar
  28. 28.
    F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon, Quasipure Bose-Einstein condensate immersed in a Fermi sea, Phys. Rev. Lett. 87:080403(2001).Google Scholar
  29. 29.
    S. R. Granade, M. E. Gehm, K. M. O'Hara, and J. E. Thomas, All-optical production of a degenerate Fermi gas, Phys. Rev. Lett. 88:120405(2002).Google Scholar
  30. 30.
    Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Görlitz, and W. Ketterle, Two-species mixture of quantum degenerate Bose and Fermi gases, Phys. Rev. Lett. 88:160401(2002).Google Scholar
  31. 31.
    G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Fermi-Bose quantum degenerate 40K-87Rb mixture with attractive interaction, Phys. Rev. Lett. 89:150403(2002).Google Scholar
  32. 32.
    M. E. Gehm, S. L. Hemmer, S. R. Granade, K. M. O'Hara, and J. E. Thomas, Mechanical stability of a strongly interacting Fermi gas of atoms, Phys. Rev. A 68:011401(R)(2003).Google Scholar
  33. 33.
    C. A. Regal, C. Tickner, J. L. Bohn, and D. S. Jin, Creation of ultracold molecules from a Fermi gas of atoms, Nature 424:47(2003).Google Scholar
  34. 34.
    K. E. Strecker, G. B. Partridge, and R. G. Hulet, Conversion of an atomic Fermi gas to a long-lived molecular Bose gas, Phys. Rev. Lett. 91:080406(2003).Google Scholar
  35. 35.
    Z. Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M. W. Zwierlein, K. Dieckmann, and W. Ketterle, Fifty-fold improvement in the number of quantum degenerate fermionic atoms, Phys. Rev. Lett. 91:160401(2003).Google Scholar
  36. 36.
    J. Cubizolles, T. Bourdel, S. J. J. M. F. Kokkelmans, G. V. Shlyapnikov, and C. Salomon, Production of long-lived ultracold Li2 molecules from a Fermi gas, Phys. Rev. Lett. 91:240401(2003).Google Scholar
  37. 37.
    J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, Two-species magneto-optical trap with 40K and 87Rb, Phys. Rev. A 65:021402(2001).Google Scholar
  38. 38.
    H. Feshbach, A unified theory of nuclear reactions II, Ann. Phys. (NY) 19:287(1962).Google Scholar
  39. 39.
    E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman, Feshbach resonances in atomic Bose-Einstein condensates, Phys. Rep. 315:199(1999).Google Scholar
  40. 40.
    S. Inouye, M. R. Andrews, J. Stenger, H. J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature 392:151(1998).Google Scholar
  41. 41.
    Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar, Observation of a Feshbach resonance in cold atom scattering, Phys. Rev. Lett. 81:69(1998).Google Scholar
  42. 42.
    J. L. Roberts, N. R. Claussen, J. P. Burke, Jr., C. H. Greene, E. A. Cornell, and C. E. Wieman, Resonant magnetic field control of elastic scattering in cold 85Rb, Phys. Rev. Lett. 81:5109(1998).Google Scholar
  43. 43.
    V. Vuletic, A. J. Kerman, C. Chin, and S. Chu, Observation of low-field Feshbach resonances in collision of Cesium atoms, Phys. Rev. Lett. 82:1406(1999).Google Scholar
  44. 44.
    E. Timmermans, V. Furuya, P. W. Milonni, and A. K. Kerman, Prospect of creating a composite Fermi-Bose superfluid, Phys. Lett. A 285:228(2001).Google Scholar
  45. 45.
    M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R. Walser, Resonance superfluidity in a quantum degenerate gas, Phys. Rev. Lett. 87:120406(2001).Google Scholar
  46. 46.
    M. L. Chiofalo, S. J. J. M. F. Kokkelmans, J. N. Milstein, and M. J. Holland, Signatures of resonance superfluidity in a quantum Fermi gas, Phys. Rev. Lett. 88:120406(2002).Google Scholar
  47. 47.
    Y. Ohashi and A. Griffin, BCS-BEC crossover in a gas of Fermi atoms with a Feshbach resonance, Phys. Rev. Lett. 89:130402(2002).Google Scholar
  48. 48.
    A. Askin and J. Gordon, Cooling and trapping of atoms by resonance radiation pressure, Opt. Lett. 4:161(1979).Google Scholar
  49. 49.
    J. P. Gordon and A. Askin, Motion of atoms in a radiation trap, Phys. Rev. A 21:1606(1980).Google Scholar
  50. 50.
    S. Chu, J. E. Bjorkholm, A. Askin, and A. Cable, Experimental observation of optically trapped atoms, Phys. Rev. Lett. 57:314(1986).Google Scholar
  51. 51.
    J. Miller, R. Cline, and D. Heinzen, Far-off resonance optical trapping of atoms, Phys. Rev. A 47:R4567(1993).Google Scholar
  52. 52.
    C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, Evaporative cooling in a crossed dipole trap, Phys. Rev. Lett. 74:3577(1995).Google Scholar
  53. 53.
    D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Optical confinement of a Bose-Einstein condensate, Phys. Rev. Lett. 80:2027(1998).Google Scholar
  54. 54.
    M. D. Barrett, J. A. Sauer, and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate, Phys. Rev. Lett. 87:010404(2001).Google Scholar
  55. 55.
    R. Grimm, M. Weidemüller, and Y. B. Ovchinkov, Optical dipole traps for neutral atoms, Ad. At. Mol. Op. 42:95(2000).Google Scholar
  56. 56.
    T. Loftus, C. A. Regal, C. Tickner, J. L. Bohn, and D. S. Jin, Resonant control of elastic collisions in an optically trapped Fermi gas of atoms, Phys. Rev. Lett. 88:173201(2002).Google Scholar
  57. 57.
    G. Modugno, G. Roati, F. Riboli, F. Ferlaino, R. J. Brecha, and M. Inguscio, Collapse of a degenerate Fermi gas, Science 297:2240(2002).Google Scholar
  58. 58.
    K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, Observation of a strongly interacting degenerate Fermi gas of atoms, Science 298:2179(2002).Google Scholar
  59. 59.
    In this experiment the lowest T/TF ratio with dual evaporative cooling of two hyperfine fermion states has been achieved, as 0.08<T/TF<0.18. By performing an identical evaporation process on an equally populated mixture of the two hyperfine states the heat capacities are always well matched. On the other hand any determination of the temperature for a system made of degenerate fermions is strongly model dependent and drops in sensitivity at the lowest explored temperatures, as witnessed by the relatively large range of values for the estimated T/TF ratio.Google Scholar
  60. 60.
    C. Menotti, P. Pedri, and S. Stringari, Expansion of an interacting Fermi gas, Phys. Rev. Lett. 89:250402(2002).Google Scholar
  61. 61.
    C. Presilla and R. Onofrio, Cooling dynamics of ultracold two-species Fermi-Bose mixtures, Phys. Rev. Lett. 90:030404(2003).Google Scholar
  62. 62.
    L. Viverit, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Adiabatic compression of a trapped Fermi gas, Phys. Rev. A 63:033603(2001).Google Scholar
  63. 63.
    N. R. Thomas, A. C. Wilson, and C. J. Foot, Double-well magnetic trap for Bose- Einstein condensation, Phys. Rev. A 65:063406(2002).Google Scholar
  64. 64.
    U. Schünemann, H. Engler, M. Zielonkowski, M. Weidemüller, and R. Grimm, Magneto-optic trapping of lithium using semiconductor lasers, Opt. Commun. 158:263(1998).Google Scholar
  65. 65.
    G. Modugno, C. Benkö, P. Hannaford, G. Roati, and M. Inguscio, Sub-Doppler laser cooling of fermionic 40K atoms, Phys. Rev. A 60:R3373(1999).Google Scholar
  66. 66.
    T. Takekoshi, J. R. Yeh, and R. J. Knize, Quasi-electrostatic trap for neutral atoms, Opt. Commun. 114:421(1995).Google Scholar
  67. 67.
    T. Takekoshi and R. J. Knize, CO2 laser trap for cesium atoms, Opt. Lett. 21:77(1996).Google Scholar
  68. 68.
    K. M. O'Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, Ultrastable CO2 laser trapping of lithium atoms, Phys. Rev. Lett. 82:4204(1999).Google Scholar
  69. 69.
    K. M. O'Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, Loading dynamics of CO2 laser traps, Phys. Rev. A 63:043403(2001).Google Scholar
  70. 70.
    T. A. Savard, K. M. O'Hara, and J. E. Thomas, Laser-noise-induced heating in far-off resonance optical traps, Phys. Rev. A 56:R1095(1997).Google Scholar
  71. 71.
    K. M. O'Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, Scaling laws for evaporative cooling in time-dependent optical traps, Phys. Rev. A 64:051403R(2001).Google Scholar
  72. 72.
    M. Houbiers, H. T. C. Stoof, W. I. McAlexander, and R. G. Hulet, Elastic and inelastic collisions of Li-6 atoms in magnetic and optical traps, Phys. Rev. A 57:R1497(1998).Google Scholar
  73. 73.
    In the case of magnetic trapping for alkali species confinement and evaporation are instead kept separated. It is then possible to further compress the atomic cloud during rf-induced evaporation, which explains the earlier success of this technique to achieve the Bose-degenerate regime.Google Scholar
  74. 74.
    D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma, Phys. Rev. Lett. 57:70(1986).Google Scholar
  75. 75.
    R. deCarvalho, J. M. Doyle, B. Friedrich, T. Guillet, J. Kim, D. Patterson, and J. D. Weinstein, Buffer-gas loaded magnetic traps for atoms and molecules: A primer, Eur. Phys. J. D 7:289(1999).Google Scholar
  76. 76.
    C. Myatt, E. Burt, R. Ghrist, E. Cornell, and C. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78:586(1997).Google Scholar
  77. 77.
    I. Bloch, M. Greiner, O. Mandel, T. W. Hänsch, and T. Esslinger, Sympathetic cooling of 85Rb and 87Rb, Phys. Rev. A 64:021402(R)(2001).Google Scholar
  78. 78.
    G. Modugno, G. Ferrari, G. Roati, A. Simoni, and M. Inguscio, Bose-Einstein condensation of potassium atoms by sympathetic cooling, Science 294:1320(2001).Google Scholar
  79. 79.
    A. Chikkatur, A. Görlitz, D. M. Stamper-Kurn, S. Inouye, S. Gupta, and W. Ketterle, Suppression and enhancement of impurity scattering in a Bose-Einstein condensate, Phys. Rev. Lett. 85:483(2000).Google Scholar
  80. 80.
    S. Giorgini, L. P. Pitaevskii, and S. Stringari, Thermodynamics of a trapped Bose-condensed gas, J. Low Temp. Phys. 109:309(1997).Google Scholar
  81. 81.
    V. Bagnato, D. E. Pritchard, and D. Kleppner, Bose-Einstein condensation in an external potential, Phys. Rev. A 35:4354(1987).Google Scholar
  82. 82.
    D. A. Butts and D. S. Rokhsar, Trapped Fermi gases, Phys. Rev. A 55:4346(1997).Google Scholar
  83. 83.
    F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy, Phys. Rev. A 64:011402(R)(2001).Google Scholar
  84. 84.
    H. Heiselberg, C. J. Pethick, H. Smith, and L. Viverit, Influence of induced interaction on the superfluid transition in dilute Fermi gases, Phys. Rev. Lett. 85:2418(2000).Google Scholar
  85. 85.
    M. J. Bijlsma, B. A. Heringa, and H. T. C. Stoof, Phonon exchange in dilute Fermi-Bose mixtures: Tailoring the Fermi-Fermi interaction, Phys. Rev. A 61:053601(2000).Google Scholar
  86. 86.
    M. Amoruso, A. Minguzzi, S. Stringari, M. P. Tosi, and L. Vichi, Temperature-dependent density profiles of trapped boson-fermion mixtures, Eur. Phys. J. D 4:261(1998).Google Scholar
  87. 87.
    C. Raman, R. Onofrio, J. M. Vogels, J. R. Abo-Shaeer, and W. Ketterle, Dissipationless flow and superfluidity in gaseous Bose-Einstein condensates, J. Low Temp. Phys. 122:99(2001).Google Scholar
  88. 88.
    J. Higbie and D. M. Stamper-Kurn, Periodically dressed Bose-Einstein condensate: A superfluid with an anisotropic and variable critical velocity, Phys. Rev. Lett. 88:090401(2002).Google Scholar
  89. 89.
    D. M. Stamper-Kurn, Anisotropic dissipation of superfluid flow in a periodically dressed Bose-Einstein condensate, New J. Phys. 5:50(2003).Google Scholar
  90. 90.
    D. Boiron, A. Michaud, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, Cold and dense cesium clouds in far-detuned dipole traps, Phys. Rev. A 57:R4106(1998).Google Scholar
  91. 91.
    G. Delannoy, S. G. Murdoch, V. Boyer, V. Josse, P. Bouyer, and A. Aspect, Understanding the production of dual Bose-Einstein condensation with sympathetic cooling, Phys. Rev. A 63:051602(2001).Google Scholar
  92. 92.
    M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, Sympathetic cooling with two atomic species in an optical trap, Phys. Rev. Lett. 88:253001(2002).Google Scholar
  93. 93.
    K. Honda, Y. Tasaku, T. Kuwamoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Optical dipole force trapping of a fermion-boson mixture of ytterbium isotopes, Phys. Rev. A 66:021401(R)(2002).Google Scholar
  94. 94.
    Y. Takasu, K. Honda, K. Komori, T. Kuwamoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, High-density trapping of cold ytterbium atoms by an optical dipole force, Phys. Rev. Lett. 90:023003(2003).Google Scholar
  95. 95.
    Y. Tasaku, K. Maki, K. Komori, T. Tamako, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Spin-singlet Bose-Einstein condensation of two-electron atoms, Phys. Rev. Lett. 91:040404(2003).Google Scholar
  96. 96.
    S. Jochim, M. Bartestein, A. Altmeyer, G. Hendl, C. Chin, J. Hecker Denschlag, and R. Grimm, Pure gas of optically trapped molecules created from fermionic atoms, Phys. Rev. Lett. 91:240402(2003).Google Scholar
  97. 97.
    E. Timmermans, Degenerate Fermion gas heating by hole creation, Phys. Rev. Lett. 87:240403(2001). This interesting mechanism is based on scattering between atoms in the Fermi sea and the energetic background atoms due to the residual pressure in the trapping region, as a sort of Auger effect on the trapped Fermi gas. The requirements for the residual background pressure (<10-11 Torr) to make this heating source negligible are already well fulfilled by several ultracold atom experimental apparatuses. However, the mechanism can severely limit sympathetic cooling of Fermi atoms due to the collisions experienced with the Bose atoms.Google Scholar
  98. 98.
    I. Shvarchuck, Ch. Buggle, D. S. Petrov, K. Dieckmann, M. Zielonkowski, M. Kemmann, T. Tiecke, W. von Klitzing, G. V. Shlyapnikov, and J. T. M. Walraven, Bose- Einstein condensation into non-equilibrium states studied by condensate focusing, Phys. Rev. Lett. 89:270404(2002).Google Scholar
  99. 99.
    L. D. Carr, T. Bourdel, and Y. Castin, Limits of sympathetic cooling of fermions by bosons due to particle losses, preprint arXiv:cond-mat/0305441 (19 May 2003).Google Scholar
  100. 100.
    R. Napolitano, J. De Luca, V. S. Bagnato, and G. C. Marques, Effect of a finite number of particles in the Bose-Einstein condensation of a trapped gas, Phys. Rev. A 55:3954(1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Roberto Onofrio
    • 1
    • 2
    • 3
  • Carlo Presilla
    • 1
    • 2
    • 4
  1. 1.Dipartimento di Fisica “G. Galilei,”Università di PadovaPadovaItaly
  2. 2.Unità di Roma 1 and Center for Statistical Mechanics and ComplexityIstituto Nazionale per la Fisica della MateriaRomaItaly
  3. 3.Los Alamos National LaboratoryLos Alamos
  4. 4.Istituto Nazionale di Fisica NucleareRomaItaly

Personalised recommendations