Journal of Statistical Physics

, Volume 115, Issue 1–2, pp 255–279 | Cite as

Exact Scaling Functions for One-Dimensional Stationary KPZ Growth

  • Michael Prähofer
  • Herbert Spohn


We determine the stationary two-point correlation function of the one-dimensional KPZ equation through the scaling limit of a solvable microscopic model, the polynuclear growth model. The equivalence to a directed polymer problem with specific boundary conditions allows one to express the corresponding scaling function in terms of the solution to a Riemann–Hilbert problem related to the Painlevé II equation. We solve these equations numerically with very high precision and compare our, up to numerical rounding exact, result with the prediction of Colaiori and Moore(1) obtained from the mode coupling approximation.

Exact z-point function of the stationary polynuclear growth model orthogonal polynomials recursion relations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Colaiori and M. A. Moore, Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension, Phys. Rev. E 65:017105(2002).Google Scholar
  2. 2.
    M. Kardar, G. Parisi, and Y. Z. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56:889–892 (1986).Google Scholar
  3. 3.
    D. Forster, D. R. Nelson, and M. J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16:732–749 (1977).Google Scholar
  4. 4.
    H. van Beijeren, R. Kutner, and H. Spohn, Excess noise for driven diffusive systems, Phys. Rev. Lett. 54:2026–2029 (1985).Google Scholar
  5. 5.
    M. Prähofer and H. Spohn, Current fluctuations for the totally asymmetric simple exclusion process, in In and Out of Equilibrium, V. Sidoravicius, ed., Vol. 51, Progress in Probability (Birkhäuser, Boston, 2002), pp. 185–204.Google Scholar
  6. 6.
    M. Prähofer and H. Spohn, Universal distributions for growth processes in one dimension and random matrices, Phys. Rev. Lett. 84:4882–4885 (2000).Google Scholar
  7. 7.
    M. Prähofer and H. Spohn, Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys. 108:1071–1106 (2002).Google Scholar
  8. 8.
    E. Frey, U. C. Täuber, and T. Hwa, Mode-coupling and renormalization group results for the noisy Burgers equation, Phys. Rev. E 53:4424–4438 (1996).Google Scholar
  9. 9.
    T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, The spin-spin correlation function of the 2-dimensional Ising model: Exact results in the scaling region, Phys. Rev. B 13:316–374 (1976).Google Scholar
  10. 10.
    T. Spencer, A mathematical approach to universality in two dimensions, Physica A 279:250–259 (2000).Google Scholar
  11. 11.
    C. A. Tracy and H. Widom, Level spacing distribution and the Airy kernel, Commun. Math. Phys. 159:151–174 (1994).Google Scholar
  12. 12.
    J. Baik and E. M. Rains, Limiting distributions for a polynuclear growth model with external sources, J. Stat. Phys. 100:523–541 (2000).Google Scholar
  13. 13.
    J. Baik, Riemann-Hilbert problems for last passage percolation, math.PR/0107079, (2001).Google Scholar
  14. 14.
    V. Periwal and D. Shevitz, Unitary-matrix models as exactly solvable string theories, Phys. Rev. Lett. 64:1326–1329 (1990).Google Scholar
  15. 15.
    T. Seppäläinen, A microscopic model for the Burgers equation and longest increasing subsequences, Electronic J. Prob. 1:1–51 (1996).Google Scholar
  16. 16.
    G. Szegö, Orthogonal Polynomials (American Mathematical Society, Providence, Rhode Island, 1967).Google Scholar
  17. 17.
    M. Hisakado, Unitary matrix models and Painlevé III, Mod. Phys. Lett. A 11:3001–3010 (1996).Google Scholar
  18. 18.
    C. A. Tracy and H. Widom, Random unitary matrices, permutations and Painlevé, Commun. Math. Phys. 207:665–685 (1999).Google Scholar
  19. 19.
    A. Borodin, Discrete gap probabilities and discrete Painlevé equations, Duke Math. J. 117:489–542, (2003).Google Scholar
  20. 20.
    M. E. H. Ismail and N. S. Witte, Discriminants and functional equations for polynomials orthogonal on the unit circle, J. Approx. Th. 110:200–228 (2001).Google Scholar
  21. 21.
    S. P. Hastings and J. B. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rat. Mech. Anal. 73:31–51 (1980).Google Scholar
  22. 22.
    J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12:1119(1999).Google Scholar
  23. 23.
    M. Prähofer and H. Spohn, Statistical self-similarity of one-dimensional growth processes, Physica A 279:342–352 (2000).Google Scholar
  24. 24.
    J. Baik and E. M. Rains, Algebraic aspects of increasing subsequences, Duke Math. J. 109:1–65 (2001).Google Scholar
  25. 25.
    C. A. Tracy and H. Widom, private communication (1999).Google Scholar
  26. 26.
    M. Abramowitz and I. A. Stegun, eds., Pocketbook of Mathematical Functions (Verlag Harri Deutsch, Thun-Frankfurt am Main, 1984).Google Scholar
  27. 27.
    D. Barton, I. M. Willers, and R. V. M. Zahar, Taylor series methods for ordinary differential equations—An evaluation, in Mathematical Software, John Rice, ed. (Academic Press, New York, 1971), pp. 369–390.Google Scholar
  28. 28.
    S. Chatterjee, MPFUN++, a C++-based multiprecision system, http://www.cs. (2000).Google Scholar
  29. 29.
    M. Prähofer and H. Spohn, The scaling function g(y), (2002).Google Scholar
  30. 30.
    T. Hwa and E. Frey, Exact scaling function of interface growth dynamics, Phys. Rev. A 44:R7873-R7876 (1991).Google Scholar
  31. 31.
    L.-H. Tang, Steady-state scaling function of the (1+1)-dimensional single-step model, J. Stat. Phys. 67:819–826 (1992).Google Scholar
  32. 32.
    H. C. Fogedby, Scaling function for the noisy Burgers equation in the soliton approximation, Europhys. Lett. 56:492–498 (2001).Google Scholar
  33. 33.
    M. Myllys, J. Maunuksela, M. Alava, J. Merikoski, and J. Timonen, Kinetic roughening in slow combustion of paper, Phys. Rev. E 64:1–12 (2001).Google Scholar
  34. 34.
    F. Colaiori and M. A. Moore, Stretched exponential relaxation in the mode-coupling theory for the Kardar-Parisi-Zhang equation, Phys. Rev. E 63:057103(2001).Google Scholar
  35. 35.
    L.-H. Gwa and H. Spohn, Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys. Rev. Lett 68:725–728 (1992).Google Scholar
  36. 36.
    L.-H. Gwa and H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation, Phys. Rev. A 46:844–854 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Michael Prähofer
    • 1
  • Herbert Spohn
    • 1
  1. 1.Zentrum Mathematik and Physik DepartmentMünchenGermany

Personalised recommendations