Journal of Statistical Physics

, Volume 88, Issue 3–4, pp 617–636 | Cite as

An Algorithm-Independent Definition of Damage Spreading—Application to Directed Percolation

  • Haye Hinrichsen
  • Joshua S. Weitz
  • Eytan Domany


We present a general definition of damage spreading in a pair of models. Using this general framework, one can define damage spreading in an objective manner that does not depend on the particular dynamic procedure that is being used. The formalism can be used for any spin-model or cellular automaton, with sequential or parallel update rules. At this point we present its application to the Domany–Kinzel cellular automaton in one dimension, this being the simplest model in which damage spreading has been found and studied extensively. We show that the active phase of this model consists of three subphases characterized by different damage-spreading properties.

Damage spreading directed percolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Kauffman, J. Theor. Biol. 22:437 (1969).Google Scholar
  2. 2.
    M. Creutz, Ann. Phys. 167:62 (1986).Google Scholar
  3. 3.
    H. Stanley, D. Stauffer, J. Kertész, and H. Herrmann, Phys. Rev. Lett. 59:2326 (1987).Google Scholar
  4. 4.
    B. Derrida and G. Weisbuch, Europhys. Lett. 4:657 (1987).Google Scholar
  5. 5.
    A. M. Mariz, H. J. Herrmann, and L. de Arcangelis, J. Stat. Phys. 59:1043 (1990).Google Scholar
  6. 6.
    N. Jan and L. de Arcangelis, Ann. Rev. Comp. Phys. (D. Stauffer, ed.), Vol. 1, p. 1 (World Scientific, Singapore, 1994).Google Scholar
  7. 7.
    H. Hinrichsen and E. Domany, Phys. Rev. E (in press).Google Scholar
  8. 8.
    E. Domany and W. Kinzel, Phys. Rev. Lett. 53:447 (1984).Google Scholar
  9. 9.
    M. L. Martins, H. F. Verona de Resende, C. Tsallis, and A. C. N. de Magalhaes, Phys. Rev. Lett. 66:2045 (1991).Google Scholar
  10. 10.
    G. F. Zebende and T. J. P. Penna, J. Stat. Phys. 74:1273 (1994).Google Scholar
  11. 11.
    M. L. Martins, G. F. Zebende, T. J. P. Penna, and C. Tsallis, J. Phys. A: Math. Gen. 27:1 (1994).Google Scholar
  12. 12.
    H. Rieger, A. Schadschneider, and M. Schreckenberg, J. Phys. A: Math. Gen. 27:L423 (1994).Google Scholar
  13. 13.
    P. Grassberger, J. Stat. Phys. 79:13 (1995).Google Scholar
  14. 14.
    G. A. Kohring and M. Schreckenberg, J. Phys. I (France) 2:2033 (1992).Google Scholar
  15. 15.
    F. Bagnoli, J. Stat. Phys. 85:151 (1996).Google Scholar
  16. 16.
    T. Tomé, Physica A 212:99 (1992).Google Scholar
  17. 17.
    J. W. Essam, J. Phys. A: Math. Gen. 22:4927 (1989).Google Scholar
  18. 18.
    R. Dickman and A. Y. Tertyakov, Phys. Rev. E 52:3218 (1995).Google Scholar
  19. 19.
    S. C. Glotzer, P. H. Poole, and N. Jan, J. Stat. Phys. 68, 895 (1992).Google Scholar
  20. 20.
    H. K. Janssen, Z. Phys. B 42:151 (1981).Google Scholar
  21. 21.
    P. Grassberger, Z. Phys. B 47:365 (1982).Google Scholar
  22. 22.
    M. H. Kim and H. Park, Phys. Rev. Lett. 73:2579 (1994).Google Scholar
  23. 23.
    R. Dickman and I. Jensen, Phys. Rev. Lett. 67:2391 (1991).Google Scholar
  24. 24.
    J. W. Essam, K. De'Bell, J. Adler, and F. M. Bhatti, Phys. Rev. B 33:1982 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Haye Hinrichsen
    • 1
  • Joshua S. Weitz
    • 1
    • 2
  • Eytan Domany
    • 1
  1. 1.Department of Physics of Complex SystemsWeizmann InstituteRehovotIsrael
  2. 2.Princeton UniversityUSA

Personalised recommendations