Journal of Statistical Physics

, Volume 114, Issue 5–6, pp 1619–1623 | Cite as

A Counter-Example to the Theorem of Hiemer and Snurnikov

  • Thierry Monteil


A planar polygonal billiard \(\mathcal{P}\) is said to have the finite blocking property if for every pair (O, A) of points in \(\mathcal{P}\) there exists a finite number of “blocking” points B1,...,B n such that every billiard trajectory from O to A meets one of the B i 's. As a counter-example to a theorem of Hiemer and Snurnikov, we construct a family of rational billiards that lack the finite blocking property.

rational polygonal billiards translation surfaces blocking property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hiemer and V. Snurnikov, Polygonal billiards with small obstacles, J. Stat. Phys. 90:453–466 (1998).Google Scholar
  2. 2.
    H. Masur and S. Tabachnikov, Rational billiards and flat structures, Handbook on Dynamical Systems, Vol. 1A (North-Holland, Amsterdam, 2002), pp. 1015–1089.Google Scholar
  3. 3.
    T. Monteil, On the finite blocking property, preprint.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Thierry Monteil
    • 1
  1. 1.CNRS UPR 9016, Case 907Institut de Mathématiques de LuminyMarseille cedex 09France

Personalised recommendations