Journal of Statistical Physics

, Volume 114, Issue 5–6, pp 1361–1392 | Cite as

Negative Virial Coefficients and the Dominance of Loose Packed Diagrams for D-Dimensional Hard Spheres

  • N. Clisby
  • B. M. McCoy


We study the virial coefficients B k of hard spheres in D dimensions by means of Monte-Carlo integration. We find that B5 is positive in all dimensions but that B6 is negative for all D≥6. For 7≤k≤17 we compute sets of Ree–Hoover diagrams and find that either for large D or large k the dominant diagrams are “loose packed.” We use these results to study the radius of convergence and the validity of the many approximations used for the equations of state for hard spheres.

hard spheres virial expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. N. V. Temperley, Would a classical gas of non-attracting rigid spheres show a phase transition? Proc. Phys. Soc. (London) B70:536–537 (1957).Google Scholar
  2. 2.
    F. H. Ree and W. G. Hoover, On the signs of the hard sphere virial coefficients, J. Chem. Phys. 40:2048–2049 (1964).Google Scholar
  3. 3.
    L. Tonks, The complete equation of state of one, two, and three-dimensional gases of hard elastic spheres, Phys. Rev. 50:955–963 (1936).Google Scholar
  4. 4.
    L. Boltzmann, Verslag. Gewone Vergadering Afd. Natuurk. Nederlandse Akad. Wtensch. 7:484(1899).Google Scholar
  5. 5.
    J. S. Rowlinson, The virial expansion in two dimensions, Mol. Phys. 7:593–594 (1964).Google Scholar
  6. 6.
    P. C. Hemmer, Virial coefficients for the hard-core gas in two dimensions, J. Chem. Phys. 42:1116–1118 (1964).Google Scholar
  7. 7.
    J. J. van Laar, Berekening der tweede correctie op de grootheid b der toestandsvergelijking van der Waals, Amsterdam Akad. Versl. 7:350–364 (1899).Google Scholar
  8. 8.
    B. R. A. Nijboer and L. van Hove, Radial distribution function of a gas of hard spheres and the superposition approximation, Phys. Rev. 85:777–783 (1952).Google Scholar
  9. 9.
    F. H. Ree and W. G. Hoover, Fifth and sixth virial coefficients for hard spheres and hard discs, J. Chem. Phys. 40:939–950 (1964).Google Scholar
  10. 10.
    K. W. Kratky, A new graph expansion of virial coefficients, J. Stat. Phys. 27:533–551 (1982).Google Scholar
  11. 11.
    K. W. Kratky, Fifth to tenth virial coefficients of a hard-sphere fluid, Physica A 87: 584–600 (1977).Google Scholar
  12. 12.
    K. W. Kratky, Overlap graph representation of b6 and b7, J. Stat. Phys. 29:129–138 (1982).Google Scholar
  13. 13.
    E. J. Janse van Rensburg, Virial coefficients for hard discs and hard spheres, J. Phys. A 26:4805–4818 (1993).Google Scholar
  14. 14.
    F. H. Ree and W. G. Hoover, Seventh virial coefficients for hard spheres and hard discs, J. Chem. Phys. 46:4181–4196 (1967).Google Scholar
  15. 15.
    A. Y. Vlasov, X.-M. You, and A. J. Masters, Monte-Carlo integration for virial coefficients re-visited: Hard convex bodies, spheres with a square-well potential and mixtures of hard spheres, Mol. Phys. 100:3313–3324 (2002).Google Scholar
  16. 16.
    M. Luban and A. Baram, Third and fourth virial coefficients of hard hyperspheres of arbitrary dimensionality, J. Chem. Phys. 76:3233–3241 (1982).Google Scholar
  17. 17.
    N. Clisby and B. M. McCoy, Analytical calculation ofB4 for hard spheres in even dimensions, cond-mat/0303098.Google Scholar
  18. 18.
    M. Bishop, A. Masters, and J. H. R. Clarke, Equation of state of hard and Weeks-Chandler-Anderson hyperspheres in four and five dimensions, J. Chem. Phys. 110:11449–11453 (1999).Google Scholar
  19. 19.
    E. Thiele, Equation of state for hard spheres, J. Chem. Phys. 39:474–479 (1963).Google Scholar
  20. 20.
    M. S. Wertheim, Exact solution of the Percus-Yevick integral equation for hard spheres, Phys. Rev. Lett. 10:321–323 (1963).Google Scholar
  21. 21.
    M. S. Wertheim, Analytic solution of the Percus-Yevick equation, J. Math Phys. 5:643(1964).Google Scholar
  22. 22.
    E. A. Guggenheim, Variations on van der Waals equation of state for high densities, Mol. Phys. 9:199(1965).Google Scholar
  23. 23.
    N. F. Carnahan and K. E. Starling, Equation of state for nonattracting rigid spheres, J. Chem. Phys. 51:635–636 (1969).Google Scholar
  24. 24.
    W. G. Hoover and F. H. Ree, Melting transition and communal entropy for hard spheres, J. Chem. Phys. 49:3609–3617 (1968).Google Scholar
  25. 25.
    R. Hoste and J. D. Dael, Equation of state for hard-sphere and hard-disk systems, J. Chem. Soc. Faraday Trans. 2 80:477–488 (1984).Google Scholar
  26. 26.
    J. I. Goldman and J. A. White, Equation of state for the hard-sphere gas, J. Chem. Phys. 89:6403(1988).Google Scholar
  27. 27.
    E. J. Le Fevre, Equation of state for hard-sphere fluid, Nature Phys. 235:20(1972).Google Scholar
  28. 28.
    D. Ma and G. Ahmadi, An equation of state for dense rigid sphere gases, J. Chem. Phys. 84:3449(1986).Google Scholar
  29. 29.
    S. Jasty, M. Al-Naghy, and M. de Llano, Critical exponent for glassy packing of rigid spheres and disks, Phys. Rev. A 35:1376–1381 (1987).Google Scholar
  30. 30.
    Y. Song, R. M. Stratt, and A. E. Mason, The equation of state of hard spheres and the approach to random closest packing, J. Chem. Phys. 88:1126–1133 (1988).Google Scholar
  31. 31.
    X. Z. Wang, van der Waals-Tonks-type equations of state for hard-disk and hard-sphere fluids, Phys. Rev. E 66:031203(2002).Google Scholar
  32. 32.
    S. Torquato, Mean nearest-neighbor distance in random packings of hard D-dimensional spheres, Phys. Rev. Lett. 74:2156–2159 (1995).Google Scholar
  33. 33.
    S. Torquato, Nearest-neighbor statistics for packings of hard spheres and disks, Phys. Rev. E 51:3170–3182 (1995).Google Scholar
  34. 34.
    B. J. Alder and T. E. Wainwright, Phase transition for a hard sphere system, J. Chem. Phys. 27:1208–1209 (1957).Google Scholar
  35. 35.
    B. J. Alder and T. E. Wainwright, Studies in molecular dynamics 2: Behavior of small numbers of elastic hard spheres, J. Chem. Phys. 33:1439(1960).Google Scholar
  36. 36.
    J. G. Kirkwood and E. Monroe, On the theory of fusion, J. Chem. Phys. 8:845–846 (1940).Google Scholar
  37. 37.
    T. V. Ramakrishnan and M. Yussouff, 1st principles order-parameter theory of freezing, Phys. Rev. B 19:2775–2794 (1979).Google Scholar
  38. 38.
    B. B. Laird, J. D. McCoy, and A. D. J. Haymet, Density functional theory of freezing: Analysis of crystal density, J. Chem. Phys. 87:5449(1987).Google Scholar
  39. 39.
    A. D. J. Haymet and D. W. Oxtoby, A molecular theory for freezing: Comparison of theories, and results for hard spheres, J. Chem. Phys. 84:1769–1777 (1986).Google Scholar
  40. 40.
    W. G. Hoover and A. G. De Rocco, Sixth and seventh virial coefficients for the parallel hard-cube model, J. Chem. Phys. 36:3141–3162 (1962).Google Scholar
  41. 41.
    R. J. Baxter, Three-colorings of the square lattice: A hard squares model, J. Math. Phys. 11:3116–3124 (1970).Google Scholar
  42. 42.
    R. J. Baxter, Hard hexagons—;Exact solution, J. Phys. A 13:L61–70 (1980).Google Scholar
  43. 43.
    M. P. Richey and C. A. Tracy, Equation of state and isothermal compressibility for the hard hexagon model in the disordered regime, J. Phys. A 20:L1121–L1126 (1987).Google Scholar
  44. 44.
    G. S. Joyce, On the hard-hexagon model and the theory of modular functions, Phil. Trans. R. Soc. Lond. A 325:643–702 (1988).Google Scholar
  45. 45.
    J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, 1940).Google Scholar
  46. 46.
    F. H. Ree and W. G. Hoover, Reformulation of the virial series for classical fluids, J. Chem. Phys. 41:1635–1645 (1964).Google Scholar
  47. 47.
    J. K. Percus and G. J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev. 110:1–13 (1958).Google Scholar
  48. 48.
    J. K. Percus, The pair distribution function in classical statistical mechanics, in The Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964), pp. II–33–II–170.Google Scholar
  49. 49.
    F. Harary and E. M. Palmer, Graphical Enumeration (Academic Press, 1973).Google Scholar
  50. 50.
    B. D. McKay, Practical graph isomorphism, Congr. Numer. 30:45–87 (1981).Google Scholar
  51. 51.
    L. M. Blumenthal, Theory and Applications of Distance Geometry (Clarendon Press, Oxford, 1953).Google Scholar
  52. 52.
    J. K. Percus, Dimensional reduction of integrals of orthogonal invariants, Commun. Pure Appl. Math. 40:449–453 (1987).Google Scholar
  53. 53.
    J. G. Loeser, Z. Zhen, S. Kais, and D. R. Herschbach, Dimensional interpolation of hard sphere virial coefficients, J. Phys. A. 26:4805–4818 (1993).Google Scholar
  54. 54.
    H. L. Frisch and J. K. Percus, High dimensionality as an organizing device for classical fluids, Phys. Rev. E 60:2942–2948 (1999).Google Scholar
  55. 55.
    J. P. J. Michels and N. J. Trappeniers, Dynamical computer simulations on hard hyperspheres in four-and five-dimensional space, Phys. Lett. 104:425–429 (1984).Google Scholar
  56. 56.
    R. Finken, M. Schmidt, and H. Lö;wen, Freezing transition of hard hyperspheres, Phys. Rev. E 65:016108(2001).Google Scholar
  57. 57.
    S. Katsura and Y. Abe, Irreducible cluster integrals of hard-sphere gases, J. Chem. Phys. 39:2068–2079 (1963).Google Scholar
  58. 58.
    J. L. Lebowitz and O. Penrose, Convergence of virial expansion, J. Math. Phys. 5:841(1964).Google Scholar
  59. 59.
    A. Baram and M. Fixman, Rigorous bounds on the termination densities of hard disk and hard sphere fluids, J. Chem. Phys. 99:5623–5624 (1993).Google Scholar
  60. 60.
    H. Reiss, H. L. Frisch, and J. L. Lebowitz, Statistical mechanics of rigid spheres, J. Chem. Phys. 31:369–380 (1959).Google Scholar
  61. 61.
    J. D. Bernal and J. Mason, Coordination of randomly packed spheres, Nature 188: 910–911 (1960).Google Scholar
  62. 62.
    J. D. Bernal, Bakerian lecture 1962—;The structure of liquids, Proc. Roy. Soc. London Ser. A 280:299–322 (1964).Google Scholar
  63. 63.
    G. D. Scott, Packing of equal spheres, Nature 188:908–909 (1960).Google Scholar
  64. 64.
    J. L. Finney, Random packings and the structure of simple liquids I. The geometry of random close packing, Proc. Roy. Soc. London Ser. A 319:479–493 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • N. Clisby
    • 1
  • B. M. McCoy
    • 1
  1. 1.C. N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookStony Brook

Personalised recommendations