Journal of Statistical Physics

, Volume 114, Issue 5–6, pp 1343–1361 | Cite as

Analytic Calculation of B4 for Hard Spheres in Even Dimensions

  • N. Clisby
  • B. M. McCoy


We exactly calculate the fourth virial coefficient for hard spheres in even dimensions for D = 4, 6, 8, 10, and 12.

hard spheres virial expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Tonks, The complete equation of state of one, two and three-dimensional gases of hard elastic spheres, Phys. Rev. 50:955–963 (1936).Google Scholar
  2. 2.
    L. Boltzmann, Verslag. Gewone Vergadering Afd. Natuurk. Nederlandse Akad. Wetensch. 7:484(1899).Google Scholar
  3. 3.
    M. Luban and A. Baram, Third and fourth virial coefficients of hard hyperspheres of arbitrary dimensionality, J. Chem. Phys. 76:3233–3241 (1982).Google Scholar
  4. 4.
    J. S. Rowlinson, The virial expansion in two dimensions, Mol. Phys. 7:593–594 (1964).Google Scholar
  5. 5.
    P. C. Hemmer, Virial coefficients for the hard-core gas in two dimensions, J. Chem. Phys. 42:1116–1118 (1964).Google Scholar
  6. 6.
    J. J. van Laar, Berekening der tweede correctie op de grootheid b der toestandsverglijking van der Waals, Amsterdam Akad. Versl. 7:350–364 (1899).Google Scholar
  7. 7.
    B. R. A. Nijboer and L. van Hove, Radial distribution function of a gas of hard spheres and the superposition approximation, Phys. Rev. 85:777–783 (1952).Google Scholar
  8. 8.
    J. E. Kilpatrick, The computation of virial coefficients, Adv. Chem. Phys. 20:39–69 (1971).Google Scholar
  9. 9.
    J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, 1940).Google Scholar
  10. 10.
    C. G. Joslin, Comment on “Third and fourth virial coefficients of hard hyperspheres of arbitrary dimensionality,” J. Chem. Phys. 77:2701–2702 (1982).Google Scholar
  11. 11.
    F. H. Ree and W. G. Hoover, Fifth and sixth virial coefficients for hard spheres and hard discs, J. Chem. Phys. 40:939–950 (1964).Google Scholar
  12. 12.
    F. H. Ree and W. G. Hoover, Reformulation of the virial series for classical fluids, J. Chem. Phys. 41:1635–1645 (1964).Google Scholar
  13. 13.
    M. J. D. Powell, The volume internal to three intersecting hard spheres, Mol. Phys. 7:591–592 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • N. Clisby
    • 1
  • B. M. McCoy
    • 1
  1. 1.C. N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookStony Brook

Personalised recommendations