Journal of Statistical Physics

, Volume 114, Issue 3–4, pp 1127–1137 | Cite as

Complexity of Dynamics as Variability of Predictability

  • Ruedi Stoop
  • Norbert Stoop
  • Leonid Bunimovich
Article

Abstract

We construct a complexity measure from first principles, as an average over the “obstruction against prediction” of some observable that can be chosen by the observer. Our measure evaluates the variability of the predictability for characteristic system behaviors, which we extract by means of the thermodynamic formalism. Using theoretical and experimental applications, we show that “complex” and “chaotic” are different notions of perception. In comparison to other proposed measures of complexity, our measure is easily computable, non-divergent for the classical 1-d dynamical systems, and has properties of non-overuniversality. The measure can also be computed for higher-dimensional and experimental systems, including systems composed of different attractors. Moreover, the results of the computations made for classical 1-d dynamical systems imply that it is not the nonhyperbolicity, but the existence of a continuum of characteristic system length scales, that is at the heart of complexity.

complex systems thermodynamic formalism complexity measures entropy prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Solomonoff, Rep. ZTB-138 (ZATOR Co., Cambridge, Massachusetts, 1960).Google Scholar
  2. 2.
    A. N. Kolmogorov, Probl. Inf. Theory 1:3(1965).Google Scholar
  3. 3.
    A. Lempel and J. Ziv, IEEE Trans. Inf. Theory IT-22:75(1976).Google Scholar
  4. 4.
    P. Grassberger, Internat. J. Theoret. Phys. 25:907(1986).Google Scholar
  5. 5.
    R. Wackerbauer, A. Witt, H. Atmanspacher, J. Kurths, and H. Scheingraber, Chaos Solitons Fractals 4:133–173 (1994).Google Scholar
  6. 6.
    J. E. Bates and H. K. Shepard, Phys. Lett. A 172:416(1993).Google Scholar
  7. 7.
    J. P. Crutchfield and C. R. Shalizi, Phys. Rev. E 59:275–283 (1999).Google Scholar
  8. 8.
    J. S. Shiner, M. Davison, and P. T. Landsberg, Phys. Rev. E 59:1459(1999).Google Scholar
  9. 9.
    J. Peinke, J. Parisi, O. E. Rössler, and R. Stoop, Encounter with Chaos (Springer, Berlin, 1992).Google Scholar
  10. 10.
    M. Kohmoto, Phys. Rev. A 37:1345(1988).Google Scholar
  11. 11.
    Y. Oono and Y. Takahashi, Progr. Theor. Phys. 63:1804(1980).Google Scholar
  12. 12.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Phys. Rev. A 33:1141(1986).Google Scholar
  13. 13.
    P. Szêpfalusy, T. Têl, A. Csordas, and Z. Kovacs, Phys. Rev. A 36:3525(1987).Google Scholar
  14. 14.
    Note that S(ɛ)/ɛ can be interpreted as the dimension of the fractal set of the observable assuming the value ɛ, which yields a with our derivation consistent interpretation.Google Scholar
  15. 15.
    R. Stoop, Europhys. Lett. 25:99(1994).Google Scholar
  16. 16.
    R. Stoop and W.-H. Steeb, Phys. Rev. E 55:6589(1997).Google Scholar
  17. 17.
    Ya. G. Sinai, Anal. and Appl. 2:70–80 (1968).Google Scholar
  18. 18.
    R. Stoop, D. Blank, A. Kern, J.-J. v.d. Vyver, M. Christen, and C. Wagner, Cog. Brain Res. 13:293–304 (2002).Google Scholar
  19. 19.
    R. Stoop and J. Parisi, Phys. Rev. A 43:1802(1991).Google Scholar
  20. 20.
    R. Stoop, Phys. Lett. A 173:369(1993).Google Scholar
  21. 21.
    C. G. Langton, Physica D 22:120(1986).Google Scholar
  22. 22.
    S. A. Kauffman, The Origin of Order (Oxford University Press, Oxford, 1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Ruedi Stoop
    • 1
  • Norbert Stoop
    • 2
  • Leonid Bunimovich
    • 3
  1. 1.INI, Physics DepartementUniversity/ETH ZürichZürichSwitzerland
  2. 2.Physics Department ETH Zürich, and International School of Scientific ComputingRand Afrikaans UniversityJohannesburgSouth Africa
  3. 3.Southeast Applied Analysis CenterGeorgia Institute of TechnologyAtlanta

Personalised recommendations