Advertisement

Journal of Structural Chemistry

, Volume 44, Issue 4, pp 531–537 | Cite as

Quantum-Chemical Calculation of Matrix Elements in a Basis of Functions with Polynomial Tails

  • V. M. Tapilin
Article
  • 28 Downloads

Abstract

A numerical integration method is suggested for calculating Hamiltonian matrix elements in a basis of functions with polynomial tails with allowance for discontinuities of higher-order derivatives of the basis function within the domain of integration. The method is tested by calculating matrix elements for a copper crystal. The results for the overlap matrix elements are presented demonstrating efficiency of the method.

numerical integration confined functions copper crystal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    CECAM/Psi-k Workshop on Local Orbitals and Linear-Scaling ab initio Calculations, Lyons, 3-7 September, 2001; http://www. tcm. phy. cam. ac. uk/LocalOrbital.Google Scholar
  2. 2.
    C. M. J. Wijers, H. G. Bekker, and N. E. Christensen, Phys. Rev., B52, 7767-7770 (1995).Google Scholar
  3. 3.
    H. G. Bekker, C. M. J. Wijers, and N. E. Christensen, Phys. B, 217, 193-206 (1996).Google Scholar
  4. 4.
    V. M. Tapilin, J. Phys.:Condens. Matter, 12, 6773-6781 (2000).Google Scholar
  5. 5.
    V. M. Tapilin, Zh. Strukt. Khim., 42, 511-517 (2001).Google Scholar
  6. 6.
    V. M. Tapilin, ibid., 43, 214-219 (2002).Google Scholar
  7. 7.
    P. M. Boerrigter, G. te Velde, and E. J. Baerends, Int. J. Quant. Chem., 33, 87 (1988).Google Scholar
  8. 8.
    G. te Velde and E. J. Baerends, J. Comput. Phys., 99, 84 (1992).Google Scholar
  9. 9.
    N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobelkov, Numerical Methods [in Russian ], Nauka, Moscow (1987).Google Scholar
  10. 10.
    G. te Velde, F. M. Bickelhaupt, E. J. Baerends, et al., J. Comput. Chem., 22, 931-967 (2001).Google Scholar
  11. 11.
    G. te Velde and E. J. Baerends, Phys. Rev., B44, 7888-7903 (1991).Google Scholar
  12. 12.
    V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz., 15, 48-54 (1975).Google Scholar
  13. 13.
    V. I. Lebedev, ibid., 16, 293-306 (1976).Google Scholar
  14. 14.
    F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, Englewood-Cliffs (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • V. M. Tapilin
    • 1
  1. 1.G. K. Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesRussia

Personalised recommendations