Advertisement

Journal of Russian Laser Research

, Volume 25, Issue 3, pp 253–266 | Cite as

Quantum Probability Measures and Tomographic Probability Densities

  • G. G. Amosov
  • V. I. Man'ko
Article

Abstract

Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the mean value of the operator delta-function is shown to be equal to the partial derivative of the distribution function of the quantum probability measure. For spin states, the spin tomogram expressed in terms of the mean value of the operator Kronecker delta-function is related to the corresponding density operator for the quantum probability measure associated with the discrete variable. The star-product of symplectic quantum measures is studied and the evolution equation for symplectic quantum measures is derived.

symplectic quantum tomogram star-product evolution equation spin-tomogram quantum probability measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Amosov and V. I. Man'ko, Phys. Lett. A, 318, 287 (2003).Google Scholar
  2. 2.
    G. G. Amosov and V. I. Man'ko, “Quantum tomograms as densities of von Neumann probability distributions,” in: H. Moya-Cessa, R. Jáurequi, S. Hacyan, and O. Castaños (eds.), Proceedings of the 8th International Conference on Squeezed States and Uncertainty Relations (Puebla, Mexico, July 2003), Rinton Press (2003), p. 7.Google Scholar
  3. 3.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932).Google Scholar
  4. 4.
    J. Bertrand and P. Bertrand, Found. Phys., 17, 397 (1987).Google Scholar
  5. 5.
    K. Vogel and H. Risken, Phys. Rev. A, 40, 2847 (1989).Google Scholar
  6. 6.
    S. Mancini, V. I. Man'ko, and P. Tombesi, Quantum Semiclass. Opt., 7, 615 (1995).Google Scholar
  7. 7.
    E. P. Wigner, Phys. Rev., 40, 749 (1932).Google Scholar
  8. 8.
    D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. Rev. Lett., 70, 1244 (1993).Google Scholar
  9. 9.
    S. Schiller, G. Breitenbach, S. F. Pereira, T. Mikker, and J. Mlynek, Phys. Rev. Lett., 77, 2933 (1996).Google Scholar
  10. 10.
    J. Radon, Ber. Verh. Sachs. Akad., 69, 262 (1917).Google Scholar
  11. 11.
    G. M. D'Ariano, S. Mancini, V. I. Man'ko, and P. Tombesi, Quantum Semiclass. Opt., 8, 1017 (1996).Google Scholar
  12. 12.
    O. V. Man'ko, V. I. Man'ko, and G Marmo, J. Phys. A: Math. Gen., 35, 699 (2001).Google Scholar
  13. 13.
    F. Bayen, M. Flato, C. Fronsdal, A. Lichnerovicz, and D. Sternheimer, Lett. Math. Phys., 1, 521 (1975).Google Scholar
  14. 14.
    A. S. Holevo, Statistical Structure of Quantum Theory, Lecture Notes in Physics, Springer Verlag (2001), Vol. 67.Google Scholar
  15. 15.
    A. S. Holevo, Russ. Math. Surveys, 53:6, 1295 (1998).Google Scholar
  16. 16.
    G. W. MacKey, Mathematical Foundations of Quantum Mechanics, W. A. Benjamin Inc., New York (1963).Google Scholar
  17. 17.
    K. E. Cahill and R. J. Glauber, Phys. Rev., 177, 1882 (1969).Google Scholar
  18. 18.
    G. G. Amosov, A. S. Holevo, and R. F. Werner, Probl. Inf. Transm., 36, 24 (2000).Google Scholar
  19. 19.
    G. G. Amosov and A. S. Holevo, Theor. Probab. Appl., 47, 143 (2002).Google Scholar
  20. 20.
    G. G. Amosov, Inter. J. Math. & Math. Sci., 54, 3343 (2003).Google Scholar
  21. 21.
    M. A. Man'ko, V. I. Man'ko, and R. V. Mendes, J. Phys. A: Math. Gen., 34, 8321 (2001).Google Scholar
  22. 22.
    V. I. Man'ko and R. V. Mendes, Phys. Lett. A, 263, 53 (1999).Google Scholar
  23. 23.
    V. I. Man'ko and O. V. Man'ko, JETP, 85, 430 (1997).Google Scholar
  24. 24.
    V. V. Dodonov and V. I. Man'ko, Phys. Lett., A 229, 335 (1997).Google Scholar
  25. 25.
    S. Mancini, V. I. Man'ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • G. G. Amosov
    • 1
  • V. I. Man'ko
    • 2
  1. 1.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations