Journal of Quantitative Criminology

, Volume 20, Issue 1, pp 1–26 | Cite as

Methodological Sensitivities to Latent Class Analysis of Long-Term Criminal Trajectories

  • Elaine P. Eggleston
  • John H. Laub
  • Robert J. Sampson


A recent and growing body of research has employed a semiparametric group-based approach to discover underlying developmental trajectories of crime. Enthusiasm for such latent class models has not been matched with robustness and sensitivity analyses to determine how conclusions from the method vary according to fundamental methodological problems that inhere in criminological data. Using a sample of 500 delinquent boys and their official crime counts from ages 7 to 70, this paper systematically addresses how three concerns in longitudinal research—(a) length of follow-up, (b) the inclusion of exposure time (incarceration), and (3) data on involuntary desistance through death—influence our inferences about developmental trajectories. While there is some evidence of stability, a comparison of group number, shape, and group assignment across varying conditions indicates that all three data considerations can alter trajectory attributes in important ways. More precisely, longer-term data on offending and the inclusion of incarceration and mortality information appear to be key pieces of information, especially when analyzing high-rate offending patterns.

semiparametric group-based method sensitivity analysis longitudinal research methods trajectories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer, D. J., and Curran, P. (2003). Distributional assumptions of growth mixture models: Implications for over-extraction of latent trajectory classes. Psychol. Meth. 8: 338-363.Google Scholar
  2. Brame, B., Nagin, D., and Tremblay, R. (2001a). Developmental trajectories of physical aggression from school entry to late adolescence. J. Child Psychol. Psychiat. Allied Discipl. 42: 503-513.Google Scholar
  3. Brame, R., Mulvey, E. P., and Piquero, A. R. (2001b). On the development of different kinds of criminal activity. Sociol. Meth. Res. 29: 319-341.Google Scholar
  4. Bushway, S., Brame, R., and Paternoster, R. (1999). Assessing stability and change in criminal offending: A comparison of random effects, semiparametric, and fixed effects modeling strategies. J. Quant. Criminol. 15: 23-61.Google Scholar
  5. D'Unger, A. V., Land, K. C., McCall, P. L., and Nagin, D. S. (1998). How many latent classes of delinquent/criminal careers? Results from mixed Poisson regression analyses. Am. J. Sociol. 103: 1593-1630.Google Scholar
  6. Glueck, S., and Glueck, E. (1950). Unraveling Juvenile Delinquency, The Commonwealth Fund, New York.Google Scholar
  7. Hill, K. G., White, H. R., Chung, I.-J., Hawkins, J. D., and Catalano, R. F. (2000). Early adult outcomes of adolescent binge drinking: Person-and variable-centered analyses of binge drinking trajectories. Alcohol. Clin. Exp. Res. 24: 892-901.Google Scholar
  8. Jones, B. L., Nagin, D. S., and Roeder, K. (2001). A SAS procedure based on mixture models for estimating developmental trajectories. Sociol. Meth. Res. 29: 374-393.Google Scholar
  9. Land, K. C., McCall, P. L., and Nagin, D. S. (1996). A comparison of Poisson, negative binomial, and semiparametric mixed Poisson regression models with empirical applications to criminal careers data. Sociol. Meth. Res. 24: 387-442.Google Scholar
  10. Lattimore, P. K., Linster, R. L., and MacDonald, J. M. (1997). Risk of death among serious young offenders. J. Res. Crime Delinq. 34: 187-209.Google Scholar
  11. Laub, J. H., Nagin, D. S., and Sampson, R. J. (1998). Trajectories of change in criminal offending: Good marriages and the desistance process. Am. Sociol. Rev. 63: 225-238.Google Scholar
  12. Laub, J. H., and Sampson, R. J. (2003). Shared Beginnings, Divergent Lives: Delinquent Boys To Age 70, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  13. Laub, J. H., and Vaillant, G. E. (2000). Delinquency and mortality: A 50-year follow-up study of 1,000 delinquent and nondelinquent boys. Am. J. Psychiat. 157: 96-102.Google Scholar
  14. Maughan, B., Pickles, A., Rowe, R., Costello, E. J., and Angold, A. (2000). Developmental trajectories of aggressive and non-aggressive conduct problems. J. Quant. Criminol. 16: 199-221.Google Scholar
  15. Nagin, D. S. (1999). Analyzing developmental trajectories: A semiparametric, group-based approach. Psychol. Meth. 4: 139-157.Google Scholar
  16. Nagin, D. S., and Land, K. C. (1993). Age, criminal careers, and population heterogeneity: Specification and estimation of a nonparametric, mixed Poisson model. Criminology 31(3): 327-362.Google Scholar
  17. Nagin, D. S., and Tremblay, R. E. (1999). Trajectories of boys' physical aggression, opposition, and hyperactivity on the path to physically violent and nonviolent juvenile delinquency. Child Dev. 70: 1181-1196.Google Scholar
  18. Nagin, D. S., and Tremblay, R. E. (2001). Analyzing developmental trajectories of distinct but related behaviors: A group-based method. Psychol. Meth. 6: 18-34.Google Scholar
  19. Piquero, A. R., Blumstein, A., Brame, R., Haapanen, R., Mulvey, E. P., and Nagin, D. S. (2001). Assessing the impact of exposure time and incapacitation on longitudinal trajectories of criminal offending. J. Adoles. Res. 16: 54-74.Google Scholar
  20. Raudenbush, S. W. (2001). Comparing personal trajectories and drawing inferences from longitudinal data. Ann. Rev. Psychol. 52: 501-525.Google Scholar
  21. Reiss, A. J., Jr. (1989). Ending Criminal Careers. Prepared for the Final Report of the "Desistance/Persistence Working Group" of the Program on Human Development and Criminal Behavior. MacArthur Foundation and National Institute of Justice.Google Scholar
  22. Roeder, K., Lynch, K. G., and Nagin, D. S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. J. Am. Statist. Assoc. 94: 766-776.Google Scholar
  23. Sampson, R. J. and Laub, J. H. (1993). Crime in the Making: Pathways and Turning Points through Life, Harvard University Press, Cambridge, Massachusetts.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Elaine P. Eggleston
    • 1
  • John H. Laub
    • 1
  • Robert J. Sampson
    • 2
  1. 1.Department of Criminology and Criminal JusticeUniversity of MarylandCollege Park
  2. 2.Department of SociologyHarvard UniversityCambridge

Personalised recommendations