Journal of Porous Materials

, Volume 10, Issue 4, pp 213–222

Carbon Aerogels for Electrochemical Double Layer Capacitors

  • H. Pröbstle
  • M. Wiener
  • J. Fricke


Carbon aerogels are prepared here via pyrolysis of resorcinol-formaldehyde aerogels. Their open porous and electrically conductive structure renders carbon aerogels suitable for the application in supercapacitors. Different types of electrodes can be derived from the sol-gel-precursors of carbon aerogels: Monolithic fibre-reinforced electrodes and polymer-carbon compounds. Both carbon fibre reinforced and polymeric bound aerogel electrodes based on polytetrafluoroethylene (PTFE) have been investigated in this work with respect to their electrical conductivity, surface area and capacitive performance. The capacitance of both electrode types is above 65 F/cm3 in aqueous electrolytes and this meets the demands of supercapacitor electrodes.

carbon aerogel activation surface area supercapacitor electrochemical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Nickerson, in Proc. Vol. of the 9th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices (Florida Educational Seminars Inc., Deerfield Beach, 1999).Google Scholar
  2. 2.
    A. Burke, J. Power Sources 91, 37 (2000).Google Scholar
  3. 3.
    B.V. Tilak and C.-Chen, in Electrochem. Soc. Proc., edited by F.M. Delnik and M. Tomkiewicz (ECS, Chicago, 1995), vol. 95-29, p. 111.Google Scholar
  4. 4.
    B.E. Conway, Electrochemical Supercapacitors (Kluwer Academic/Plenum Publishers, New York, 1999).Google Scholar
  5. 5.
    Frackowiak E. Beguin F., Carbon 39, 937 (2001).Google Scholar
  6. 6.
    H. Pröbstle, R. Saliger, and J. Fricke, Studies in Surface Science and Catalysis (Elsevier Science, Amsterdam, 2001), vol. 128 p. 371.Google Scholar
  7. 7.
    H. Pröbstle, M. Glora, M. Wiener, C. Schmitt, and J. Fricke, Extended Abstracts of the International Conference on Carbon (Beijing, 2002).Google Scholar
  8. 8.
    Wencui Li, G. Reichenauer, and J. Fricke, Carbon 40, 2955 (2002).Google Scholar
  9. 9.
    J.C. Farmer, US patent 5 954 937.Google Scholar
  10. 10.
    J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, and J.F. Poco, J. Electrochem. Soc. 143, 159 (1996).Google Scholar
  11. 11.
    R. Petričević, M. Glora, and J. Fricke, Carbon 39, 857 (2001).Google Scholar
  12. 12.
    R. Petričević, R. Saliger, H. Pröbstle, P. Novak, and J. Fricke, German Patent DE 199 38 822.Google Scholar
  13. 13.
    R.W. Pekala, J. Mater. Sci. 24, 3221 (1989).Google Scholar
  14. 14.
    R.W. Pekala and F.M. Kong, J. de Physique (Paris) Colloq. C4, 33 (1989).Google Scholar
  15. 15.
    V. Bock, A. Emmerling, and J. Fricke, J. Non-Cryst. Solids 225, 69 (1998).Google Scholar
  16. 16.
    R. Saliger, G. Reichenauer, and J. Fricke, Studies in Surface Science and Catalysis (Elsevier Science, Amsterdam, 2001), vol. 128, p. 381.Google Scholar
  17. 17.
    R. Saliger, U. Fischer, C. Herta, and J. Fricke, J. Non-Cryst. Solids 225, 81 (1998).Google Scholar
  18. 18.
    R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, and B. Dunn, J. Non-Cryst. Solids 225, 74 (1998).Google Scholar
  19. 19.
    H. Pröbstle, C. Schmitt, and J. Fricke, J. of Power Sources 105, 189 (2002).Google Scholar
  20. 20.
    R. Saliger, V. Bock, R. Petričević, T. Tillotson, S. Geis, and J. Fricke, J. Non-Cryst. Solids 221, 144 (1997).Google Scholar
  21. 21.
    R. Petričević, G. Reichenauer, V. Bock, A. Emmerling, and J. Fricke, J. Non-Cryst. Solids 225, 41 (1998).Google Scholar
  22. 22.
    S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Ceram. Soc. 60, 309 (1938).Google Scholar
  23. 23.
    K. Kaneko, C. Ishii, M. Ruike, and H. Kuwabara, Carbon 30, 1075 (1992).Google Scholar
  24. 24.
    F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders &; Porous Solids (Academic Press, London, 1999).Google Scholar
  25. 25.
    M.M. Dubinin and L.V. Radushkevich, Proc. Acad. Sci. USSR 55, 331 (1947).Google Scholar
  26. 26.
    J. Koresh and A. Soffer, J. Electrochem. Soc. 124, 1379 (1977).Google Scholar
  27. 27.
    R. Kötz and M. Carlen, Electrochimica Acta 45, 2483 (2000).Google Scholar
  28. 28.
    John McHardy and Frank Ludwig, Electrochemistry of Semiconductors and Electronics (Noyes Publications, New Jersey, 1992), p. 297.Google Scholar
  29. 29.
    R. de Levie, Advances in Electrochemistry and Electrochemical Engineering 6, 329 (1967).Google Scholar
  30. 30.
    H. Keiser, K.D. Beccu, and M.A. Gutjahr, Electrochimica Acta 21, 539 (1976).Google Scholar
  31. 31.
    Hyun-Kon Song, Hee-Young Hwang, Kun-Hong Lee, and Le H. Dao, Electrochimica Acta 45, 2241 (2000).Google Scholar
  32. 32.
    U. Fischer, R. Saliger, V. Bock, R. Petričević, and J. Fricke, Journal of Porous Materials 4, 281 (1997).Google Scholar
  33. 33.
    D. Qu and H. Shi, Journal of Power Sources 74, 99 (1998).Google Scholar
  34. 34.
    K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties (John Wiley &; Sons, New York, 1988).Google Scholar
  35. 35.
    H. Shi, Electrochimica Acta 41(10), 1633 (1996).Google Scholar
  36. 36.
    C. Schmitt, H. Pröbstle, and J. Fricke, J. Non-Cryst. Solids 285, 277 (2001).Google Scholar
  37. 37.
    F. Beck, F. Krüger, and B. Wermeckes, GDCH-Monographien 9, 119 (1997).Google Scholar
  38. 38.
    J.R. Park and D.D. McDonald, Corros. Sci. 23, 295 (1983).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • H. Pröbstle
    • 1
  • M. Wiener
    • 1
  • J. Fricke
    • 1
  1. 1.Physikalisches Institut der Universität Würzburg, Am HublandWürzburgGermany

Personalised recommendations