Journal of Paleolimnology

, Volume 32, Issue 2, pp 137–148

A 300 year record of environmental change from Lake Tuborg, Ellesmere Island, Nunavut, Canada

  • Sheldon V. Smith
  • Raymond S. Bradley
  • Mark B. Abbott
Article

Abstract

Lamination thickness measurements in sediments from Lake Tuborg, northern Ellesmere Island, Canada document an increase in high-energy hydrologic discharge events from ∼1865 to 1962. The timing of these events corresponds with evidence for an increase in the amount of melt on the adjacent Agassiz Ice Cap, as recorded in ice cores. There appears to have been a non-linear change in depositional energy resulting from a dramatic increase in Agassiz meltwater discharge, particularly after ∼1908. A strong correlation between the Lake Tuborg varve thickness record, the amount of melting on the Agassiz Ice Cap and Eureka 900 mb air temperature records suggests that changes in the height of the freezing level in the atmosphere have affected the extent of summer melting on the Agassiz Ice Cap, leading to high volume discharge events and associated sediment flux to Lake Tuborg.

Arctic Paleoclimate Paleohydrology Paleolimnology Varves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt B.T. 1987. Developing synoptic analogs for extreme mass balance conditions on Queen Elizabeth Island ice caps. J. Clim. Appl. Meteorol. 26: 1605–1623.CrossRefGoogle Scholar
  2. Bowman T.E. and Long A. 1968. 14C age of saline waters in Lake Tuborg. Arctic 21: 172–180.Google Scholar
  3. Bradley R.S. 1973. Recent freezing level changes and climatic deterioration in the Canadian Arctic archipelago. Nature 243: 398–400.Google Scholar
  4. Bradley R.S. 1975. Equilibrium-line altitudes, mass balance, and July freezing-level heights in the Canadian High Arctic. J. Glaciol. 14: 267–274.Google Scholar
  5. Bradley R.S. 1990. Holocene paleoclimatology of the Queen Elizabeth Islands, Canadian High Arctic. Quatern. Sci. Rev. 9: 365–384.CrossRefGoogle Scholar
  6. Bradley R.S. 2000. Past global changes and their significance for the future. Quatern. Sci. Rev. 19: 391–402.CrossRefGoogle Scholar
  7. Bradley R.S. and England J. 1978. Recent climatic fluctuations of the Canadian High Arctic and their significance for glaciology. Arctic Alpine Res. 10: 715–731.Google Scholar
  8. Bradley R.S. and Jones P.D. 1993. “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3: 367–376.Google Scholar
  9. Braun C., Hardy D.R., Bradley R.S. and Retelle M. 2000. Hydrological and meteorological observations at Lake Tuborg, Ellesmere Island, Nunavut, Canada. Polar Geography 24: 83–97.Google Scholar
  10. Clark J.S. 1988. Stratigraphic charcoal analysis on petrographic thin sections: application to fire history in northwestern Minnesota. Quatern. Res. 30: 81–91.CrossRefGoogle Scholar
  11. Comiso J.C. 2002. A rapidly declining perennial sea ice cover in the Arctic. Geophys. Res. Lett. 29: 1956, doi:10.1029/2002GL015650.CrossRefGoogle Scholar
  12. Comiso J.C. 2003. Warming trends in the arctic from clear sky satellite observations. J. Clim. 16: 3498–3510.CrossRefGoogle Scholar
  13. Douglas M.S.V., Smol J.P., and Blake W.Jr. 1994. Marked post-18th century environmental change in high-Arctic ecosystems. Science 266: 416–419.Google Scholar
  14. Dronia H. 1974. Uber temperaturanderungen der freien atmosphare auf der Nordhalbkugel in den letzten 25 jahren. Meteorolog. Rundsch. 27: 166–174.Google Scholar
  15. Fisher D.A. and Koerner R.M. 1994. Signal and noise in four ice-core records from the Agassiz Ice Cap, Ellesmere Island, Canada: details of the last millenium for stable isotopes, melt, and solid conductivity. Holocene 4: 113–120.Google Scholar
  16. Fisher D.A. and Koerner R.M. 2002. Holocene ice core records. In: Mackay A.W., Battarbee R.W., Birks H.J.B. and Oldfield F. (eds), Global Change in the Holocene: Approaches to Reconstructing Fine-Resolution Climate Change. Arnold, London, UK (in press).Google Scholar
  17. Fisher D.A., Koerner R.M. and Reeh N. 1995. Holocene climatic records from Agassiz Ice Cap, Ellesmere Island, NWT, Canada. Holocene 5: 19–24.Google Scholar
  18. Fisher D., Koerner R.M., Kuivinen K., Clausen H.B., Johnsen S.J., Steffensen J.-P., Gunderstrup N. and Hammer C.U. 1996. Inter-comparisons of ice core δ 18O and precipitation records from sites in Canada and Greenland over the last 3500 years and over the last few centuries in detail using EOF techniques. In: Jones P.D., Bradley R.S. and Jouzel J. (eds), Climate Variations and Forcing Mechanisms of the Last 2000 Years, Springer-Verlag, Berlin, pp. 297–328.Google Scholar
  19. Francus P., Bradley R.S., Abbott M.B., Patridge W. and Keimig F. 2002. Paleoclimate studies of minerogenic sediments using annually resolved textural parameters. Geophys. Res. Lett. 29(20): 1998, doi:10.1029/2002GL015 082.CrossRefGoogle Scholar
  20. Hardy D.R., Bradley R.S. and Zolitschka B. 1996. The climatic signal in varved sediments from Lake C2, northern Ellesmere Island, Canada. J. Paleolimnol. 16: 227–238.Google Scholar
  21. Grumet N.S., Wake C.P., Mayewski P.A., Zielinksi G.A., Whitlow S.I., Koerner R.M., Fisher D.A. and Woollett J.M. 2001. Variability of sea-ice extent in Baffin Bay over the last millennium. Climatic Change 49: 129–145.CrossRefGoogle Scholar
  22. Hattersley-Smith G. and Serson H. 1964. Stratified water of a glacial lake in northern Ellesmere Island. Arctic 17: 108.Google Scholar
  23. Hughen K., Overpeck J.T. and Anderson R.F. 2000. Recent warming in a 500-year palaeotemperature record from varved sediments, Upper Soper Lake, Baffin Island, Canada. Holocene 10: 9–■ ■ Author, please provide page range ■ ■.CrossRefGoogle Scholar
  24. Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Da X., Maskell K. and Johnson C.A. 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK., 881 pp.Google Scholar
  25. Jacoby G.C. and D’Arrigo R.D. 1989. Reconstructed northern hemisphere annual temperature since 1671 based on highlatitude tree-ring data from North America. Climatic Change 1: 39–59.CrossRefGoogle Scholar
  26. Jones P.D. and Bradley R.S. 1992. Climatic variations over the last 500 years. In: Bradley R.S. and Jones P.D. (eds), Climate Since A.D. 1500. Routledge, London, UK, pp. 649–665.Google Scholar
  27. Kahl J.D., Charlevoix D.J., Zaitseva N.A., Schnell R.C. and Serreze M.C. 1993. Absence of evidence for greenhouse warming over the Arctic Ocean in the past 40 years. Nature 361: 335–337.CrossRefGoogle Scholar
  28. Koerner R.M. 1977. Devon Island ice cap; core stratigraphy and paleoclimate. Science 196: 15–18.Google Scholar
  29. Koerner R.M. 1979. Accumulation, ablation, and oxygen isotope variations on the Queen Elizabeth Islands ice caps. J. Glaciol. 22: 25–41.Google Scholar
  30. Koerner R.M. and Fisher D.A. 1990. A record of Holocene summer climate from a Canadian High-Arctic ice core. Nature 343: 630–631.CrossRefGoogle Scholar
  31. Lamoureux S.F. 1994. Embedding unfrozen lake sediments for thin section preparation. J. Paleolimnol. 1: 407–414.Google Scholar
  32. Lamoureux S.F. and Bradley R.S. 1996. A 3300 year varved sediment record of environmental change from northern Ellesmere Island, Canada. J. Paleolimnol. 16: 239–255.CrossRefGoogle Scholar
  33. Lamoureux S.F., England J.H., Sharp M.J. and Bush A.B.G. 2001. A varve record of increased “Little Ice Age” rainfall associated with volcanic activity, Arctic archipelago, Canada. Holocene 11: 243–249.CrossRefGoogle Scholar
  34. Maag H. 1969. Ice dammed lakes and marginal glacial drainage on Axel Heiberg Island, Canadian Arctic Archipelago. Reports of the Jacobsen-McGill Arctic Research Expedition 1959-1962, McGill University, Montreal, 147 pp.Google Scholar
  35. Overpeck J., Hughen K., Hardy D., Bradley R.S., Case R., Douglas M., Finney B., Gajewski K., Jacoby G., Jennings A., Lamoureux S., Lasca A., MacDonald G., Moore J., Retelle M., Smith S., Wolfe A. and Zielinski G. 1997. Arctic environmental change of the last four centuries. Science 278: 1251–1256.CrossRefGoogle Scholar
  36. Perren B., Bradley R.S. and Francus P. 2002. Rapid lacustrine response to recent High Arctic warming: a diatom record from Sawtooth Lake, Ellesmere Island, Nunavut. Arctic Antarctic Alpine Res. 35: 271–278.Google Scholar
  37. Pourchet M. and Pinglot J. 1989. Cesium-137 and lead-210 in alpine lake sediments: measurements and modeling of mixing processes. J. Geophys. Res. 94(C9): 12761–12770.Google Scholar
  38. Reasoner M.A. 1993. Equipment and procedure improvements for a lightweight, inexpensive percussion core sampling system. J. Paleolimnol. 8: 277–281.CrossRefGoogle Scholar
  39. Serreze M.C., Walsh J.E., Chapin F.S.III, Osterkamp T., Dyurgerov M., Romanovsky V., Oechel W.C., Morison J., Zhang T. and Barry R.G. 2000. Observational evidence of recent change in the northern high latitude environment. Climatic Change 46: 159–207.CrossRefGoogle Scholar
  40. Serreze M.C., Maslanik J.A., Scambos T.A., Fetterer F., Stroeve J., Knowles K., Fowler C., Drobot S., Barry R.G. and Haran T.M. 2003. A record minimum arctic sea ice extent and area in 2002. Geophys. Res. Lett. 30: 1110, doi:10.1029/2002GL016406.CrossRefGoogle Scholar
  41. Zolitschka B. 1996. High resolution lacustrine sediments and their potential for paleoclimatic reconstruction. In: Jones P.D., Bradley R.S. and Jouzel J. (eds), Climatic Variations and Forcing Mechanisms of the last 2000 Years, Springer-Verlag, Berlin, Heidelberg, Germany, pp. 453–478.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Sheldon V. Smith
    • 1
  • Raymond S. Bradley
    • 2
  • Mark B. Abbott
    • 3
  1. 1.Woodard & CurranPortlandUSA
  2. 2.Climate System Research Center, Department of GeosciencesUniversity of MassachusettsAmherstUSA
  3. 3.Department of Geology and Planetary ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations