Journal of Paleolimnology

, Volume 32, Issue 1, pp 1–18 | Cite as

Vegetation and sedimentation in the Lake Edward Basin, Uganda–Congo during the late Pleistocene and early Holocene

  • Kristina R.M. BeuningEmail author
  • James M. Russell


New palynological and sedimentological data obtained from the basal 3 m of core E96-2P from Lake Edward, Uganda–Congo record conditions wetter than present in the Edward basin from ∼11 000 to 6700 yr BP, in phase with other climate and vegetation records of northern hemispheric East Africa. Dominant pollen taxa include Celtis spp., Alchornea spp., Olea spp., and Moraceae indicating a moist semi-deciduous tropical forest. More xeric indicators such as Amaranthaceae and Asteraceae together with Poaceae comprise less than 5% of the pollen sum throughout this interval as compared with between 44 and 50% during a lake lowstand at ∼2000 cal yr BP and at the core top (near modern). The differences between these two assemblages suggest a ∼25 to 60% increase in annual precipitation during the early- to mid-Holocene as compared to modern (1500–2000 vs. 1200 mm/yr today). Early Holocene sediments in E96-2P are composed of laminated diatom oozes with moderately high total sulfur concentrations (2.8–4.7%) and no authigenic calcite, also indicative of conditions wetter than present. Between ∼9000 and 6700 yr BP, palynological and sedimentary proxies indicate sub-millennial-scale events related to changes in riverine discharge and runoff in the Edward basin. We attribute the variability in runoff, and hence precipitation, to Holocene variability in Indian or Atlantic Ocean SSTs or to shifts in the relative contribution of Indian and Atlantic moisture sources to the western Rift of equatorial Africa.

East Africa Lake Edward Old carbon Palynology Sulfur Radiocarbon dating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott M.B. and Stafford T.W. 1996. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quat. Res. 45: 300–311.Google Scholar
  2. Alley R.B., Mayewski P., Sowers T., Stuiver M., Taylor K.C. and Clark P.U. 1997. Holocene climate instability: a prominent, widespread event 8200 years ago. Geology 25: 483–486.Google Scholar
  3. Ammann B. and Lotter A.F. 1989. Late-Glacial radiocarbonand palynostratigraphy on the Swiss plateau. Boreas 18: 109–126.Google Scholar
  4. Appleby P.G. and Oldfield F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediments. Cantena 5: 1–8.Google Scholar
  5. Barker P.A., Street-Perrott F.A., Leng M.J., Greenwood P.B., Swain D.L., Perrott R.A., Telford R.J. and Ficken K.J. 2001. A 14 000-Year oxygen isotope record from diatom silica in two alpine lakes on Mt. Kenya. Science 292: 2307–2310.Google Scholar
  6. Beadle L.C. 1966. Prolonged stratification and deoxygenation in tropical lakes I. Crater Lake Nkugute, Uganda, compared with Lakes Bunyoni and Edward. Limnol. Oceanogr. 2: 152–163.Google Scholar
  7. Beadle L.C. 1981. The Inland Waters of Tropical Africa: An Introduction to Tropical Limnology. Longman, London, 475 pp.Google Scholar
  8. Beuning K.R.M. 1997. Late-Glacial and Holocene vegetation, climate and hydrology of Lakes Albert and Victoria, East Africa. PhD thesis, University of Minnesota, 183 pp.Google Scholar
  9. Beuning K.R.M. 1999. Modern pollen, vegetation and charcoal abundance in the lowland crater lakes of western Uganda. Abstract — International Quaternary Association Meeting, Durban South Africa, August 1999.Google Scholar
  10. Beuning K.R.M., Talbot M.R. and Kelts K.R. 1997. A revised 30 000-year paleoclimatic and paleohydrological history of Lake Albert, East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 136: 259–279.Google Scholar
  11. Bishop W.W. 1969. Pleistocene stratigraphy of Uganda. Geological Survey of Uganda Memoir no. 10, 115 pp.Google Scholar
  12. Boven A., Pasteels P., Punzalan L.E., Yamba T.K. and Musisi J.H. 1998. Quaternary perpotassic magmatism in Uganda (Toro-Ankole Volcanic Province): age assessment and significance for magmatic evolution along the East African rift. J. Afr. Earth Sci. 26: 463–476.Google Scholar
  13. Brooks A.S. and Smith C.C. 1987. Ishango revisited: new age determinations and cultural interpretations. Afr. Archae. Rev. 5: 65–78.Google Scholar
  14. Brown T.A., Nelson D.E., Mathews R.W., Vogel J.S. and Southon J.R. 1989. Radiocarbon dating of pollen by accelerator mass spectrometry. Quat. Res. 32: 205–212.Google Scholar
  15. de Heinzelin J. and Verniers J. 1996. Realm of the upper Semliki (Eastern Zaire): an essay on historical geology. Ann. Koninklijk Mus. Midden-Afrika 102: 3–83.Google Scholar
  16. Dean W. 1974. Determination of carbonate and organic matter is calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Petrol. 44: 242–248.Google Scholar
  17. DeBusk G.H.J. 1997. The distribution of pollen in the surface sediments of Lake Malawi, Africa, and the transport of pollen in large lakes. Rev. Palaeobot. Palynol. 97: 123–153.Google Scholar
  18. Degens E.T., von Herzen R.P., Wong H., Deuser W.G. and Jannasch H.W. 1973. Lake Kivu: Structure, chemistry, and biology of an East African rift lake. Geol. Rund. 62: 245–277.Google Scholar
  19. Deevey E.S., Gross M.S., Hutchinson G.E. and Kraybill H.L. 1954. The natural 14C content of materials from hardwater lakes. Proc. Natl. Acad. Sci. USA 40: 285–288.Google Scholar
  20. DeMaster D.J. 1979. The marine budgets of silica and Si 32. PhD dissertation. Yale University, 308 pp.Google Scholar
  21. DeMenocal P., Ortiz J., Guilderson T. and Sarnthein M. 2000. Coherent high-and low-latitude climate variability during the Holocene warm period. Science 288: 2198–2202.Google Scholar
  22. Des Marais D.J. 2001. Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. In: Valley J.W. and Cole D.R. (eds), Stable Isotope Geochemistry, Reviews in Mineralogy and Geochemistry, vol 43. The Mineralogical Society of America, Washington, DC, pp. 555–578.Google Scholar
  23. Ebinger C.J. 1989. Tectonic development of the western branch of the East African rift valley. Geol. Soc. Am. Bull. 101: 117–133.Google Scholar
  24. Eby G.N., Lloyd F.E., Woolley A.R., Stoppa F. and Weaver S.D. 2003. Geochemistry and mantle source(s) for carbonatitic and potassic lavas, western branch of the East-African rift system, SW Uganda. Geolines 15: 15–19.Google Scholar
  25. Faegri K., Krzywinski K., Iversen J. and Kaland P.E. 2000. Textbook of Pollen Analysis. IV edn. Blackburn Press, 340 pp.Google Scholar
  26. Fenchel T., King G.M. and Blackburn T.H. 1998. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling. Academic Press, London, 307 pp.Google Scholar
  27. Gasse F. 1977. Evolution of Lake Abhé (Ethiopia and TFAI) from 70 000 BP. Nature 265: 42–45.Google Scholar
  28. Gasse F. 2000. Hydrological Changes in the African tropics since the last glacial maximum. Quat. Sci. Rev. 19: 189–211.Google Scholar
  29. Gasse F. and Van Campo E. 1994. Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth Planet. Sci. Lett. 126: 435–456.Google Scholar
  30. Gasse F., Ledee V., Masault M. and Fontes J.C. 1989. Waterlevel fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342: 57–59.Google Scholar
  31. Gasse F., Barker P. and Johnson T. 2002. A 24,600 year diatom record from the northern Lake Malawi basin. In: Odada E.O. and Olago D. (eds), The East African Great Lakes: Limnology, Palaeolimnology, Biodiversity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 393–414.Google Scholar
  32. Goldhaber M.B. and Kaplan I.R. 1974. The sulfur cycle. In: Goldberg E.D. (ed.), The Sea, vol. 5, Wiley, New York, pp. 569–655.Google Scholar
  33. Government of Uganda, 1996. Land Cover Stratification (Vegetation) Map of Uganda. Scale 1:900, 000. National Biomass Study, Kampala.Google Scholar
  34. Haberyan K.A. and Hecky R.E. 1987. The late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeogr. Palaeoclimatol. Palaeoecol. 61: 169–197.Google Scholar
  35. Hecky R.E. and Degens E.T. 1973. Late Pleistoncene-Holocene chemical stratigraphy and paleolimnology of the Rift Valley Lakes of central Africa. Woods Hole Oceanographic Institution Technical Report 73: 93 pp.Google Scholar
  36. Hedberg O. 1951. Vegetation belts of the East African mountains. Svensk Bot. Tidskr. 45: 140–202.Google Scholar
  37. Hedberg O. 1955. Altitudinal zonation of the vegetation on the East African mountains. Proc. Linn. Soc. London 165: 134–136.Google Scholar
  38. Johnson T.C. 1996. Sedimentary processes and signals of past climatic change in the large lakes of the East African rift valley. In: Johnson T.C. and Odada E.O. (eds), The Limnology, Climatology, and Paleoclimatology of the East African Lakes. Gordon and Breach, Amsterdam, pp. 367–412.Google Scholar
  39. Johnson T.C., Scholz C.A., Talbot M.R., Kelts K., Ricketts R.D., Ngobi G., Beuning K.R.M., Ssemmanda I. and McGill J.W. 1996. Late Pleistocene desication of Lake Victoria and rapid evolution of cichlid fishes. Science 273: 1091–1093.Google Scholar
  40. Johnson T.C., Chan Y., Beuning K.R.M., Kelts K., Ngobi G. and Verschuren D. 1998. Biogenic silica profiles in Holocene cores from Lake Victoria: implications for lake level history of Initiation of the Victoria Nile. In: Lehman J.T. (ed.), Environmental Change and Response in East African Lakes, Kluwer, Dordrecht, pp. 75–88.Google Scholar
  41. Johnson T.C., Brown E.T., McManus J., Barry S., Barker P. and Gasse F. 2002. A high-resolution paleoclimate record spanning the past 25 000 years in southern East Africa. Science 296: 113–117.Google Scholar
  42. Kelts K. and Hsu K.J. 1978. Freshwater carbonate sedimentation. In: Lerman A.J. (ed.), Lakes — Chemistry, Geology, Physics, Springer, New York, pp. 295–323.Google Scholar
  43. Kelts K., Briegel U., Ghilardi K. and Hsu K. 1986. The limnogeology-ETH coring system. Schweiz. Z. Hydrol. 48: 104–115.Google Scholar
  44. Kendall R.L. 1969. An ecological history of the Lake Victoria basin. Ecol. Monogr. 39(2): 121–176.Google Scholar
  45. Kilham P. 1984. Sulfate in inland waters: sulfate to chloride ratios. Int. Ver. Theor. Agnew. Limnol. Verh. 22: 296–302.Google Scholar
  46. Krause G.L., Schelske C.L. and Davis C.O. 1983. Comparison of three wet alkaline methods of digestion of biogenic silica in water. Freshwat. Biol. 13: 73–81.Google Scholar
  47. Laerdal T. 2000. Lakes Edward, George, and Victoria (Uganda): A study of late Quaternary rift tectonics, sedimentation, and paleoclimate. PhD thesis, University of Bergen.Google Scholar
  48. Laerdal T. and Talbot M.R. 2002. Basin neotectonics of Lakes Edward and George, East African rift. Palaeogeogr. Palaeoclimatol. Palaeoecol. 187: 213–232.Google Scholar
  49. Laerdal T., Talbot M.R. and Russell J.M. 2002. Late Quaternary sedimentation and climate in the Lakes Edward and George area, Uganda-Congo. In: Odada E.O. and Olago D. (eds), The East African Great Lakes: Limnology, Palaeolimnology, Biodiversity, Kluwer Adademic Publishers, Dordrecht, The Netherlands, pp. 429–470.Google Scholar
  50. Lamb H.F., Gasse F., Benkaddour A., El Hamouti N., van der Kaars S., Perkins W.T., Pearce N.J. and Roberts C.N. 1995. Relation between century-scale Holocene arid intervals in tropical and temperate zones. Nature 373: 134–137.Google Scholar
  51. Langdale-Brown I., Osmaston H.A. and Wilson J.G. 1964. The vegetation of Uganda and its bearing on land use. Government of Uganda, Entebbe, pp. 159.Google Scholar
  52. Laseski R.A. 1983. Modern pollen spectra from Eastern Africa and Late-Quaternary rainfall estimates for northern Lake Victoria. Unpublished PhD thesis, Brown University.Google Scholar
  53. Lehman J. 2002. Application of AVHRR to water balance, mixing dynamics, and water chemistry of Lake Edward, East Africa. In: Odada E.O. and Olago D. (eds), The East African Great Lakes: Limnology, Palaeolimnology, Biodiversity, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 236–260.Google Scholar
  54. Livingstone D.A. 1975. Late Quaternary climatic change in Africa. Annu. Rev. Ecol. Syst. 6: 249–280.Google Scholar
  55. Losher A.J. and Kelts K.R. 1990. Organic sulfur fixation in freshwater lake sediments and the implication for C/S ratios. Terra Nova 1: 253–261.Google Scholar
  56. Lyons T.W. and Berner R.A. 1992. Carbon-sulfur-iron systematics of the uppermost deep-water sediments of the Black Sea. Chem. Geol. 99: 1–27.Google Scholar
  57. Marchant R., Taylor D. and Hamilton A. 1997. Late Pleistocene and Holocene History at Mubwindi Swamp, Southwest Uganda. Quat. Res. 47: 316–328.Google Scholar
  58. McKenzie J.A. 1985. Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm W. (ed.), Chemical Processes in Lakes, Wiley, New York, pp. 99–118.Google Scholar
  59. Mora G., Boom A. and Pratt L.M. 2002. Biogeochemical characteristics of lacustrine sediments reflecting a changing alpine neotropical ecosystem during the Pleistocene. Quat. Res. 58: 189–196.Google Scholar
  60. Mugadu E.I. 2000. Geothermal energy in the development of Uganda. In: Proceedings of the World Geothermal Congress, International Geothermal Association June 2000 meeting. Kyushu, Japan, pp. 229–235.Google Scholar
  61. Nicholson S.E. 1996. A review of climate dynamics and climate variability in Eastern Africa. In: Johnson T.C. and Odada E.O. (eds), The Limnology, Climatology, and Paleoclimatology of the East African Lakes, Gordon Breach, Newark, pp. 22–56.Google Scholar
  62. Olsson I. 1986. Radiometric dating. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology, Wiley, New York, pp. 273–311.Google Scholar
  63. Raiswell R. and Berner R.A. 1985. Pyrite formation in euxinic and semi-euxinic sediments. Am. J. Sci. 285: 710–724.Google Scholar
  64. Raiswell R., Buckley F., Berner R.A. and Anderson T.F. 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sediment. Petrol. 58: 812–819.Google Scholar
  65. Regnéll J. 1992. Preparing pollen concentrates for AMS dating: a methodological study from a hard-water lake in southern Sweden. Boreas 21: 273–277.Google Scholar
  66. Rubin M. and Suess H.E. 1956. US Geological Survey radiocarbon dates III. Science 123: 442–448.Google Scholar
  67. Russell J.M., Johnson T.C., Kelts K.R., Laerdal T. and Talbot M.R. 2003. An 11 000-year liithostratigraphic and paleohydrologic record from equatorial Africa: Lake Edward, Uganda-Congo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193: 25–49.Google Scholar
  68. Russell J.M., Johnson T.C. and Talbot M.R. 2003. A 725-yr cycle in the climate of central Africa during the late Holocene. Geology 31: 677–680.Google Scholar
  69. Schnurrenberger D.W., Russell J.M. and Kelts K.R. 2003. Classification of lacustrine sediments based on sedimentary components. J. Paleolim. 29: 141–154.Google Scholar
  70. Sonzogni C., Bard E. and Rostek F. 1998. Tropical sea-surface temperatures during the last glacial period: a view based on alkenones in Indian Ocean sediments. Quat. Sci. Rev. 17: 1185–1201.Google Scholar
  71. Stager J.C. and Mayewski P. 1997. Abrupt early and Mid-Holocene climatic transition registered at the equator and the poles. Science 276: 92–95.Google Scholar
  72. Street F.A. 1979. Late Quaternary precipitation estimates for the Ziway-Shala Basin, southern Ethiopia. Palaeoecol. Afr. 11: 135–141.Google Scholar
  73. Struhsaker T.T., Kasenene J.M., Gaither J.C. Jr., Larsen N., Musango S. and Bancroft R. 1989. Tree mortality in the Kibale Forest, Uganda: A case study of dieback in a tropical rain forest adjacent to exotic confier plantations. For. Ecol. Manage. 29: 165–185.Google Scholar
  74. Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G.S., Hughen K.A., Kromer B., McCormac F.G., v.d. Plicht J. and Spurk M. 1998. INTCAL98 radiocarbon age calibration, 24, 000-0 cal BP. Radiocarbon 40: 1041–1083.Google Scholar
  75. Talbot M.R. and Kelts K.R. 1991. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic-rich lacustrine sediments. In: Katz B. (ed), Lacustrine Basin Exploration: Case Studies and Modern Analogs. American Association of Petroleum Geologists Memoir 50, Denver, USA, pp. 99–112.Google Scholar
  76. Uganda Land and Surveys Department, 1961. Vegetation Map of Uganda. Scale 1:4 000 000. In: Handbook of Natural Resources of East Africa. East African Literature Bureau, Nairobi.Google Scholar
  77. Uganda Land and Surveys Department, 1967. Topographic map of Rubirizi. Sheet 76/III. Scale: 1:50 000, Series Edition Y 732. Department of Land and Surveys, Uganda Government.Google Scholar
  78. Verschuren D. 1993. A lightweight extruder for accurate sectioning of soft-bottom lake sediment cores in the field. Limnol. Oceanogr. 38: 1796–1802.Google Scholar
  79. Vincens A., Chalie F. and Bonnefille R. 1993. Pollen-derived rainfall and temperature estimates from Lake Tanganyika and their implication for Late-Pleistocene water levels. Quat. Res. 40: 343–350.Google Scholar
  80. White F. 1983. The Vegetation of Africa. A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa. UNESCO, Paris, 356 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Wisconsin-Eau ClaireEau ClaireUSA
  2. 2.Limnological Research CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations