Journal of Paleolimnology

, Volume 31, Issue 3, pp 383–390 | Cite as

A microwave digestion technique for the extraction of fossil diatoms from coastal lake and swamp sediments

  • J.F. Parr
  • K.H. Taffs
  • C.M. Lane


This study provides an introduction to a microwave digestion technique for the extraction of fossil diatoms from sediments. The microwave technique is compared with the standard diatom extraction technique of Battarbee (Diatom analysis. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons) that uses a combination of dilute hydrochloric acid and hydrogen peroxide and the advantages and disadvantages of their use are discussed. The results suggest that the microwave technique is fast, inexpensive and most importantly produces replicable fossil diatom assemblage data. Small samples sizes are used (0.3 g) for the microwave method thus lower quantities of chemicals are required (6 ml), which significantly decreases the cost of sample processing. Our results show that the microwave digestion technique is a viable alternative that will produce similar results within a shorter period of time.

Diatom Methods Microwave digestion Sediments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acker F. and Russell B. 1999. Diatom Cleaning by Nitric Acid Digestion with a Microwave Apparatus. Academy of Natural Sciences, Patrick Center for Environmental Research, Procedure No. P-13-42.Google Scholar
  2. Battarbee R.W. and Kneen M.J. 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 27: 184–188.Google Scholar
  3. Battarbee R.W. 1986. Diatom analysis. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology, John Wiley and Sons.Google Scholar
  4. Borg I. and Groenen P. 1997. Modern Multidimensional Scaling: Theory and Applications. Springer, New York.Google Scholar
  5. Coxon A.P.M. and Davies P.M. 1982. The Users Guide to Multidimensional Scaling. Heineman, London.Google Scholar
  6. Dixit S.S. and Smol J.P. 1994. Diatoms as indicators in the Environmental Monitoring and Assessment Program — Surface Waters (EMAP-SW). Environ. Monit. Assess. 31: 275–306.Google Scholar
  7. Dixit S.S., Smol J.P., Charles D.F. and Hughes R.M. 1999. Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can. J. Fish. Aquat. Sci. 56: 131–152.Google Scholar
  8. Dokulil M.T., Schmidt R. and Kofler S. 1997. Benthic diatom assemblages as indicators of water quality in an urban floodwater impoundment, Neue Donau, Vienna, Austria. Nova Hedwigia 65: 273–283.Google Scholar
  9. Gell P.A. 1997. The development of a diatom database for inferring lake salinity, Western Victoria, Australia: towards a quantitative approach for reconstructing past climates. Aust. J. Bot. 45: 389–423.Google Scholar
  10. Jones R.A. 1994. The application of microwave technology to the oxidation of kerogen for use in palynology. Rev. Palaeobot. Palynol. 80: 333–338.Google Scholar
  11. Jones R. and Ellin S.J. 1998. Improved palynological sample preparation using an automated focused microwave digestion system. In: ■ ■ V.M., ■ ■ B.J. and Wrenn J.H. (eds), New Developments in Palynomorph Sampling, Extraction, and Analysis, American Association of Stratigraphic Palynologists, Inc., Dallas, TX, Contributions series 33, ASAP, pp. 23–28.Google Scholar
  12. Kelly M.G., Cazaubon A., Coring E., Delluomo A., Ector L., Goldsmith B., Guasch H., Hurlimann J., Jarlman A., Kawecka B., Kwandrans J., Laugaste R., Lindstrom E.A., Leitao M., Marvan P., Padisak J., Pipp E., Prygiel J., Rott E., Sabater S., Vandam H. and Vizinet J. 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J. App. Phycol. 10: 215–224.Google Scholar
  13. Krammer K. and Lange-Bertelot H. 1991a. Susswasserflora von Mitteleuropa. Bacillariophyceae 3 Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag, Stuttgart, 576 pp.Google Scholar
  14. Krammer K. and Lange-Bertelot H. 1991b. Susswasserflora von Mitteleuropa. Bacillariophyceae 4 Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. Gustav Fischer Verlag, Stuttgart, 437 pp.Google Scholar
  15. Krammer K. and Lange-Bertelot H. 1997a. Susswasserflora von Mitteleuropa. Bacillariophyceae 2 Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Stuttgart, 610 pp.Google Scholar
  16. Krammer K. and Lange-Bertelot H. 1997b. Susswasserflora von Mitteleuropa. Bacillariophyceae 1 Teil: Naviculaceae. Gustav Fischer Verlag, Stuttgart, 596 pp.Google Scholar
  17. Krull E.S., Skjemstad J.O., Graetz D., Grice K., Dunning W., Cook G.D. and Parr J.F. 2003. 13C-depleted charcoal from C3 and C4 grasses and the role of occluded carbon in phytoliths. Org. Geochem. 34: 1337–1352.Google Scholar
  18. Laing T. and Smol J. 2000. Factors influencing diatom distributions in circumpolar treeline lakes of northern Russia. J. Phycol. 36: 1035–1048.Google Scholar
  19. Parr J.F. 2002. A comparison of heavy liquid floatation and microwave digestion techniques for the extraction of fossil phytoliths from sediments. Rev. Paleobot. Palynol. 120(3–4): 315–336.Google Scholar
  20. Parr J.F. and Carter M. 2003. Phytolith and starch analysis of sediment samples from two archaeological sites on Dauar Island, Torres Strait. Veg. Hist. Archaeobot. 12(2): 131–141.Google Scholar
  21. Parr J.F., Dolic V., Lancaster G. and Boyd W.E. 2001. A microwave digestion method for the extraction of phytoliths from herbarium specimens. Rev. Paleobot. Palynol. 116: 203–212.Google Scholar
  22. Parr J.F. and Farrugia K. 2003. Waste reduction and value adding during fossil phytolith extraction and palaeoenvironmental analysis of volcanic sediments from West New Britain, Papua New Guinea, using microwave digestion and ICPMS. In: Wallace L. and Hart D. (eds), vol. 15, Conference: The state of the Art in Phytolith and Starch Research, in the Australian-Pacific-Asian regions, Pandanus Press, Canberra, terra australis, pp. 19–30.Google Scholar
  23. Reavie E.D. and Smol J.P. 2001. Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions. J. Paleolim. 25: 25–42.Google Scholar
  24. Reavie E.D., Smol J.P., Carignan R. and Lorrain S. 1998. Diatom palaeolimnology of two fluvial lakes in the St Lawrence River: a reconstruction of environmental changes during the last century. J. Phycol. 34: 446–456.Google Scholar
  25. Renberg I. 1990. A procedure for preparing large sets of diatom slides from sediment cores. J. Paleolim. 4: 87–90.Google Scholar
  26. Timms B.V. 1969. A preliminary limnological survey of the Wooli Lakes, New South Wales. Proc. Linnean Soc. of New South Wales 94: 105–112.Google Scholar
  27. Timms B.V. 1982. Coastal dune waterbodies of North-eastern New South Wales. Aust. J. Mar. Freshw. Res. 33: 203–222.Google Scholar
  28. Wilson S., Cumming B.F. and Smol J.P. 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America. Can. J. Fish. Aquat. Sci. 53: 1580–1594.Google Scholar
  29. Young G.W. and Householder A.S. 1938. Discussion of a set of points in terms of their distances. Psychometrica 1: 19–22.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Centre for Geoarchaeology and Palaeoenvironmental Research, School of Environmental Science and ManagementSouthern Cross UniversityLismoreAustralia
  2. 2.Institute of Antarctic and Southern Ocean Studies (IASOS)University of TasmaniaHobart TasmaniaAustralia

Personalised recommendations