Journal of Paleolimnology

, Volume 31, Issue 2, pp 139–149

Chronology of Sediment Deposition in Upper Klamath Lake, Oregon

  • Steven M. Colman
  • J. Platt Bradbury
  • John P. McGeehin
  • Charles W. Holmes
  • David Edginton
  • Andrei M. Sarna-Wojcicki
Article

Abstract

A combination of tephrochronology and 14C, 210Pb, and 137Cs measurements provides a robust chronology for sedimentation in Upper Klamath Lake during the last 45 000 years. Mixing of surficial sediments and possible mobility of the radio-isotopes limit the usefulness of the 137Cs and 210Pb data, but 210Pb profiles provide reasonable average sediment accumulation rates for the last 100–150 years. Radiocarbon ages near the top of the core are somewhat erratic and are too old, probably as a result of detrital organic carbon, which may have become a more common component in recent times as surrounding marshes were drained. Below the tops of the cores, radiocarbon ages in the center of the basin appear to be about 400 years too old, while those on the margin appear to be accurate, based on comparisons with tephra layers of known age.

Taken together, the data can be combined into reasonable age models for each site. Sediments have accumulated at site K1, near the center of the basin, about 2 times faster than at site CM2, on the margin of the lake. The rates are about 0.10 and 0.05 cm/yr, respectively. The chronological data also indicate that accumulation rates were slower during the early to middle Holocene than during the late Holocene, consistent with increasing wetness in the late Holocene.

137Cs 210Pb Radiocarbon Paleoclimate Paleolimnology Tephrochronology Upper Klamath Lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby P.G. and Oldfield F. 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.Google Scholar
  2. Bacon C.R. 1983. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, USA. J. Volcan. Geothermal Res. 18: 57–115.Google Scholar
  3. Bard E., Arnold M., Hamelin B., Tisnerat-Laborde N. and Cabioch G. 1998. Radiocarbon calibration by means of mass sectrometric 230Th/234U and 14C ages of corals: An updated database including samples from Barbados, Mururoa, and Tahiti. Radiocarbon 40: 1085–1092.Google Scholar
  4. Bond C.E., Hazel C.R. and Vincent D. 1968. Relations of nuisance algae to fishes in Upper Klamath Lake. Terminal Report to FWPCA, Dept. of Fisheries and Wildlife, Oregon State University, 119 pp.Google Scholar
  5. Bradbury J.P., Colman S.M. and Dean W.E. 2004a. Limnological and climatic environments at Upper Klamath Lake, Oregon during the past 45 000 years. J. Paleolim. 31: 167–188 (this issue).Google Scholar
  6. Bradbury J.P., Colman S.M. and Reynolds R.L. 2004b. The history of recent limnological changes and human impact on Upper Klamath Lake, Oregon. J. Paleolim. 31: 151–165 (this issue).Google Scholar
  7. Brenner M., Peplow A.J. and Schelske C.L. 1994. Disequilibrium between 226Ra and supported 210Pb in a sediment core from a shallow Florida lake. Limnol. Oceanogr. 39: 1222–1227.Google Scholar
  8. Colman S.M., Bradbury J.P. and Rosenbaum J.G. 2004. Paleolimnology and paleoclimate studies in Upper Klamath Lake, Oregon. J. Paleolim. 31: 129–138 (this issue).Google Scholar
  9. Eilers J.M., Kann J., Cornett J., Moser K., St. Armand A. and Gubala C.P. (in press). Recent Paleolimnology of Upper Klamath Lake, Oregon. Hydrobiologia.Google Scholar
  10. Hallet D.J., Hills L.U. and Clague J.J. 1997. New accelerator mass spectrometer radiocarbon ages for the Mazama tephra layer from Kootenay National Park, British Columbia, Canada. Can. J. Earth Sci. 34: 1202–1209.Google Scholar
  11. Kann J. 1997. Ecology and water quality dynamics of a shallow hypereutrophic lake dominated by cyanobacteria (Aphanizomenon flos-aque). PhD dissertation, University of North Carolina, Chapel Hill, North Carolina, 110 pp.Google Scholar
  12. Laenen A. and LeTourneau A.P. 1996. Upper Klamath Lake nutrient loading study — Estimate of wind-induced resuspension of bed sediment during periods of low lake elevation. US Geological Survey Open-File Report 95-414, 11 pp.Google Scholar
  13. Martin E.A. and Rice C.A. 1981. 210Pb geochronology and trace metal concentrations of sediments from Upper Klamath Lake and Lake Euwana, Oregon. Northwest Sci. 55: 269–289.Google Scholar
  14. Oldfield F., Appleby P.G. and Lund J.W.G. 1984. Empirical testing of 210Pb-dating models for lake sediments. In: Haworth E.Y. (ed.), Lake Sediments and Environmental History, Leicester University Press, Leicester, pp. 93–124.Google Scholar
  15. Robbins J.A. 1978. Geochemical and geophysical applications of radioactive lead. In: Nriagu J.O. (ed.), Biogeochemistry of Lead in the Environment, Elsevier Scientific Publ., Amsterdam, pp. 285–293.Google Scholar
  16. Robbins J.A. and Edgington D.N. 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim. Cosmochim. Acta 39: 285–304.Google Scholar
  17. Rosenbaum J.G. and Reynolds R.L. 2004. Record of Late Pleistocene glaciation and deglaciation in the southern Cascade Range: II. Flux of glacial flour in a sediment core from Upper Klamath Lake. J. Paleolim. 31: 235–252 (this issue).Google Scholar
  18. Sanville W.D., Powers C.F. and Gahler A.R. 1974. Sediments and sediment-water nutrient interchange in Upper Klamath Lake, Oregon. US Environmental Protection Agency Report EPA-660/3-74-015, 45 pp.Google Scholar
  19. Sarna-Wojcicki A.M., Lajoie K.R., Meyer C.E., Adam D.P. and Reick H.J. 1991. Tephrochronologic correlation of upper Neogene sediments along the Pacific margin, conterminous United States. In: Morrison R.B. (ed.), Quaternary Non-Glacial Geology: Conterminous United States, Geological Society of America, Decade of North American Geology, vol. K-2, Boulder, Colorado, pp. 117–140.Google Scholar
  20. Schelske C.L., Brenner M., Peplow A. and Spencer C.N. 1994. Low-background gamma counting: applications for 210Pb dating of sediments. J. Paleolim. 10: 115–128.Google Scholar
  21. Stuiver M. and Pollach H.A. 1977. Discussion — Reporting 14C data. Radiocarbon 19: 355–363.Google Scholar
  22. Stuiver M., Reimerand P.J. and Braziunas T.F. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40: 1127–1151.Google Scholar
  23. Vogel J.S., Southon J.R., Nelson D.E., Brown T.A., Polach H.A. and Anderson H.H. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. In: Wolfi W. (ed.), Proceedings of the 3rd International Symposium on Accelerator Mass Spectrometry, Nuclear Instruments and Methods in Physics Research B233, pp. 289–293.Google Scholar
  24. Whitlock C. and Bartlein P.J. 1997. Vegetation and climate change in northwest America during the past 125 kyr. Nature 388: 57–61.Google Scholar
  25. Wright H.E. 1967. A square-rod piston sampler for lake sediments. J. Sediment. Petrol. 37: 975–976.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Steven M. Colman
    • 1
  • J. Platt Bradbury
    • 2
  • John P. McGeehin
    • 3
  • Charles W. Holmes
    • 4
  • David Edginton
    • 5
  • Andrei M. Sarna-Wojcicki
    • 6
  1. 1.US Geological SurveyWoods HoleUSA
  2. 2.GoldenUSA
  3. 3.National Center MS 955US Geological SurveyRestonUSA
  4. 4.US Geological SurveySt. PetersburgUSA
  5. 5.Center for Great Lakes StudiesUniversity of WisconsinMilwaukeeUSA
  6. 6.US Geological SurveyMenlo ParkUSA

Personalised recommendations