Journal of Paleolimnology

, Volume 31, Issue 2, pp 217–233 | Cite as

Record of Late Pleistocene Glaciation and Deglaciation in the Southern Cascade Range. I. Petrological Evidence from Lacustrine Sediment in Upper Klamath Lake, Southern Oregon

  • Richard L. Reynolds
  • Joseph G. Rosenbaum
  • Josh Rapp
  • Michael W. Kerwin
  • J. Platt Bradbury
  • Steven Colman
  • David Adam


Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37–25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins of the lake and dilution of detrital material by biogenic silica and other organic matter.

Glacial flour Lacustrine sediment Late Pleistocene Paleoclimate Sediment magnetism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam D.P., Bradbury J.P., Carter C., Dean W.E., Hakala K., McGann M., Reynolds R.L., Rieck H.J., Roberts A.P., Rosenbaum J.G., Sarna-Wojcicki A.M., Schiller K. and Whitlock C. 1995. Status report on cores taken in 1991–1992 in the Upper Klamath Basin and vicinity, Oregon and California. In: Adam D.P., Bradbury J.P., Dean W.E., Gardner J.V. and Sarna-Wojcicki A.M. (eds), Report of the 1994 Workshop on the Correlation of Marine and Terrestrial Records of Climate Changes in the Western United States. US Geological Survey Open-file Report 95-34, pp. 13–29.Google Scholar
  2. Bacon C.R. 1983. Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, USA. J. Volcanol. Geothermal Res. 18: 57–115.Google Scholar
  3. Bacon C.R., Lanphere M.A. and Champion D.E. 1999. Late Quaternary slip rate and seismic hazards of the West Klamath Fault zone near Crater Lake, Oregon Cascades. Geology 27: 43–46.Google Scholar
  4. Benson L.V., Burdett J.W., Kashgarian M., Lund S.P., Phillips F.M. and Rye R.O. 1996. Climatic and hydrologic oscillations in the Owens Lake basin and adjacent Sierra Nevada, California. Science 274: 746–749.Google Scholar
  5. Benson L.V. and Thompson R.S. 1987. Lake-level variation in the Lahontan Basin for the past 50,000 years. Quaternary Res. 28: 69–85.Google Scholar
  6. Bischoff J.L., Fitts J.P. and Fitzpatrick J.A. 1997. Responses of sediment geochemistry to climate change in Owens Lake sediment: An 800-k.y. record of saline/fiesh cycles in core OL-92. In: Smith G.I. and Bischoff J.L. (eds), An 800,000-Year Paleoclimate Record From core OL-92, Owens Lake, Southeast California. Geological Society of America, Special Paper 317, pp. 37–47.Google Scholar
  7. Bradbury J.P. 1991. The late Cenozoic diatom stratigraphy and paleolimnology of Tule Lake, Siskiyou Co., California. J. Paleolimnol. 6: 205–255.Google Scholar
  8. Bradbury J.P., Colman S.M. and Reynolds R.L. 2004a. The history of recent Limnological changes and human impact on Upper Klamath Lake, Oregon. J. Paleolim. 31: 151–165 (this issue).Google Scholar
  9. Bradbury J.P., Colman S.M. and Dean W.E. 2004b. Limnological and climatic environments at Upper Klamath Lake, Oregon during the past 45,000 years. J. Paleolim. 31: 167–188 (this issue).Google Scholar
  10. Carver G.A. 1972. Glacial geology of the Mountain Lakes Wilderness and adjacent parts of the Cascade Range. PhD dissertation, University of Washington Oregon. Seattle, 76 pp.Google Scholar
  11. Colman S.M., Bradbury J.P., McGeehin J.P., Holmes C.W., Edginton D. and Sarna-Wojcicki A.M. 2004. Chronology of sediment deposition in Upper Klamath Lake, Oregon. J. Paleolim. 31: 139–149 (this issue).Google Scholar
  12. Colman S.M., Rosenbaum J.G., Reynolds R.L. and Sarna-Wojcicki A.M. 2000. Post-Mazama (7 ka) faulting beneath Upper Klamath Lake, Oregon. Bull. Seismological Soc. Am. 90: 243–247.Google Scholar
  13. Drewry D. 1986. Glacial Geologic Processes. Edward Arnold, London, 276 pp.Google Scholar
  14. Kerwin M.W. 1996. A regional stratigraphic isochron (ca. 8000 14C yr B.P.) from final deglaciation of Hudson Strait. Quaternary Res. 46: 89–98.Google Scholar
  15. Lovley D.R., Stolz J.F., Nord G.L.Jr. and Phillips E.J.P. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330: 252–254.Google Scholar
  16. McKee E.H., Duffield W.A. and Stern R.J. 1983. Late Miocene and early Pliocene basaltic rocks and their implications for crustal structure, northeastern California and south-central Oregon. Geol. Soc. Am. 94: 292–302.Google Scholar
  17. Mortlach R.A. and Froelich P.N. 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res. 36: 1415–1424.Google Scholar
  18. Muhs D.R. 1983. Airborne dust fall on the California Channel Islands, USA. J. Arid Environ. 6: 223–238.Google Scholar
  19. Muhs D.R., Bush C.A., Stewart K.C., Rowland T.R. and Crittenden R.D. 1990. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands. Quaternary Res. 33: 157–177.Google Scholar
  20. Oviatt C.G. 1997. Lake Bonneville fluctuations and global climate change. Geology 25: 155–158.Google Scholar
  21. Petersen N., Von Dobonek T. and Vali H. 1986. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature 320: 611–615.Google Scholar
  22. Prentice I.C. 1986. Vegetation responses to past climatic variation. Vegetatio 67: 131–141.Google Scholar
  23. Reynolds R.L., Belnap J. and Reheis M.C. 2001. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source. Proc. Natl. Acad. Sci. USA 98: 7123–7127.Google Scholar
  24. Reynolds R.L., Rosenbaum J.G., Bradbury J.P., Best P.J., Adam D.P. and Drexler J. 1996. Late Quaternary glacial history of southern Oregon interpreted from sediment magnetism of Upper Klamath Lake. Abstracts with Program, Geological Society of America 1996 Annual Meeting: A-504.Google Scholar
  25. Reynolds R.L., Rosenbaum J.G., Van Metre P., Tuttle M.L., Callender E. and Goldin A. 1999. Greigite (Fe3S4) as an indicator of drought — the 1912–1994 magnetic record from White Rock Lake, Dallas, Texas. J. Paleolimnol. 21: 193–204.Google Scholar
  26. Roberts A.P., Reynolds R.L., Verosub K.L. and Adam D.P. 1996. Environmental magnetic implications of greigite (Fe3S4) formation in a 3 m.y. lake sediment record from Butte Valley, northern California. Geophys. Res. Lett. 23: 2859–2862.Google Scholar
  27. Rosenbaum J.G. and Reynolds R.L. 2004a. Record of Late Pleistocene glaciation and deglaciation in the southern Cascade Range: II. Flux of glacial flour in a sediment core from Upper Klamath Lake. J. Paleolim. 31: 235–252 (this issue).Google Scholar
  28. Rosenbaum J.G. and Reynolds R.L. 2004b. Basis for paleoenvironmental interpretation of magnetic properties of sediment from Upper Klamath Lake (Oregon): effects of weathering and mineralogical sorting. J. Paleolim. 31: 253–265 (this issue).Google Scholar
  29. Rosenbaum J.G., Reynolds R.L., Adam D.P., Drexler J., Sarna-Wojcicki A.M. and Whitney G.C. 1996. Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon-Evidence from sediment magnetism, trace-element geochemistry, and pollen. Geol. Soc. Am. Bull. 108: 1328–1341.Google Scholar
  30. Rosenbaum J.G., Reynolds R.L., Rapp J., Kerwin M., Drexler J. and Adam D.A. 1997. Sediment magnetic, paleomagnetic, geochemical, and grain size data from lacustrine sediment in a core from Upper Klamath Lake, Oregon. US Geological Survey Open-file Report 97-516, 49 pp.Google Scholar
  31. Sherrod D.R. 1991. Geologic map of a part of the Cascade Range between latitudes 43°-44°, central Oregon. US Geological Survey Miscellaneous Investigation Map I-1891.Google Scholar
  32. Smith J.G. 1988. Geologic map of the Pelican Butte quadrangle, Klamath County, Oregon. US Geological Survey map GQ-1653, scale 1: 62,500.Google Scholar
  33. Smith G.I., Bischoff J.L. and Bradbury J.P. 1997. Synthesis of the paleoclimate record from Owens Lake core OL-92. In: Smith G.I. and Bischoff J.L. (eds), An 800,000-Year Paleoclimate Record from Core OL-92, Owens Lake, Southeast California. Geological Society of America, Special Paper 317, pp. 143–160.Google Scholar
  34. Snowball I.F. 1994. Bacterial magnetite and the magnetic properties of sediments in a Swedish lake. Earth Planetary Sci. Lett. 126: 129–142.Google Scholar
  35. Snowball I.F. and Thompson R. 1990. A stable chemical remanence in Holocene sediments. J. Geophys. Res. 95: 4471–4479.Google Scholar
  36. Stoermer E.F. and Smol J.P. 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, 484 pp.Google Scholar
  37. Thompson R. and Oldfield F. 1986. Environmental Magnetism. Allen & Unwin, London, 227 pp.Google Scholar
  38. Verosub K.L. and Roberts A.P. 1995. Environmental magnetism: Past, present, and future. J. Geophys. Res. 100: 2175–2192.Google Scholar
  39. Walker G.W. and MacLeod N.S. 1991. Geologic map of Oregon. US Geological Survey.Google Scholar
  40. Webb T.III 1986. Is vegetation in equilibrium with climate change? How to interpret late-Quaternary pollen data. Vegetatio 67: 75–91.Google Scholar
  41. Winchester J.A. and Floyd P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Geochem. Geol. 20: 325–343.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Richard L. Reynolds
    • 1
  • Joseph G. Rosenbaum
    • 1
  • Josh Rapp
    • 1
  • Michael W. Kerwin
    • 1
  • J. Platt Bradbury
    • 1
  • Steven Colman
    • 2
  • David Adam
    • 3
  1. 1.US Geological SurveyDenverUSA
  2. 2.US Geological SurveyWoods HoleUSA
  3. 3.MiddletownUSA

Personalised recommendations