The Protein Journal

, Volume 23, Issue 4, pp 273–285 | Cite as

Cloning and Identification of a Complete cDNA Coding for a Bactericidal and Antitumoral Acidic Phospholipase A2 from Bothrops jararacussu Venom

  • Patrícia G. Roberto
  • Simone Kashima
  • Silvana Marcussi
  • José O. Pereira
  • Spartaco Astolfi-Filho
  • Auro Nomizo
  • José R. Giglio
  • Marcos R.M. Fontes
  • Andreimar M. Soares
  • Suzelei C. França


In order to better understand the function of acidic phospholipases A2 (PLA2s) from snake venoms, expressed sequence tags (ESTs) that code for acidic PLA2s were isolated from a cDNA library prepared from the poly(A)+ RNA of venomous glands of Bothrops jararacussu. The complete nucleotide sequence (366 bp), named BOJU-III, encodes the BthA-I-PLA2 precursor, which includes a signal peptide and the mature protein with 16 and 122 amino acid residues, respectively. Multiple comparison of both the nucleotide and respective deduced amino acid sequence with EST and protein sequences from databases revealed that the full-length cDNA identified (BOJU III – AY145836) is related to an acidic PLA2 sharing similarity, within the range 55–81%, with acidic phospholipases from snake venoms. Moreover, phylogenetic analysis of amino acid sequences of acidic PLA2s from several pit viper genera showed close evolutionary relationships among acidic PLA2s from Bothrops, Crotalus, and Trimeresurus. The molecular modeling showed structural similarity with other dimeric class II PLA2s from snake venoms. The native protein BthA-I-PLA2, a nontoxic acidic PLA2 directly isolated from Bothrops jararacussu snake venom, was purified and submitted to various bioassays. BthA-I-PLA2 displayed high catalytic activity and induced Ca2+-dependent liposome disruption. Edema induced by this PLA2 was inhibited by indomethacin and dexamethasone, thus suggesting involvement of the cyclo-oxygenase pathway. BthA-I-PLA2 showed anticoagulant activity upon human plasma and inhibited phospholipid-dependent platelet aggregation induced by collagen or ADP. In addition, it displayed bactericidal activity against Escherichia coli and Staphylococcus aureus and antitumoral effect upon breast adrenocarcinoma as well as upon human leukemia T and Erlich ascitic tumor. Following chemical modification with p-bromophenacyl bromide, total loss of the enzymatic and pharmacological activities were observed. This is the first report on the isolation and identification of a cDNA encoding a complete acidic PLA2 from Bothrops venom, exhibiting bactericidal and antitumoral effects.

Acidic phospholipases A2 antitumoral effect bactericidal Bothrops jararacussu BPB-chemical modification cDNA structural analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarado, J., and Gutiérrez, J. M. (1988). Rev. Biol. Trop. 36: 563-565.Google Scholar
  2. Andrião-Escarso, S. H., Soares, A. M., Rodrigues, V. M., Angulo, Y., Díaz-Oreiro, C., Lomonte, B., et al. (2000). Biochimie 82: 755-763.Google Scholar
  3. Andrião-Escarso, S. H., Soares, A. M., Fontes, M. R. M., Fuly, A. L., Correa, F. M. A., Rosa, J. C., et al. (2002). Biochem. Pharmacol. 64: 723-732.Google Scholar
  4. Balsinde, J., Balboa, M. A., Insel, P. A., and Dennis, E. A. (1999). Annu. Rev. Pharmacol. Toxicol. 39: 175-189.Google Scholar
  5. Butron, E., Thelestam, M., and Gutiérrez, J. M. (1993). Biochim. Biophys. Acta 1179: 253-259.Google Scholar
  6. Carson, M. (1997). Methods Enzymol. 277: 493-505.Google Scholar
  7. Chaves, F., Léon, G., Alvarado, V. H., and Gutiérrez, J. M. (1998). Toxicon 36: 1861-1869.Google Scholar
  8. Chwetzoff, S., Tsunasawa, S., Sakiyama, F., and Menez, A. (1989). J. Biol. Chem. 264: 13289-13297.Google Scholar
  9. Corin, R. E., Viskatis, L. J., Vidal, J. C., and Etcheverry, M. A. (1993). Invest New Drugs 11: 11-15.Google Scholar
  10. Cura, J. E., Blanzaco, D. P., Brisson, C., Cura, M. A., Cabrol, R., Larrateguy, L., et al. (2002). Clin. Cancer Res. 8: 1033-1041.Google Scholar
  11. Cummings, B. S., McHowat, J. G., and Schnellmann, R. G. (2000). J. Pharmacol. Exp. Ther. 294: 793-799.Google Scholar
  12. Díaz, C., Gutiérrez, J. M., Lomonte, B., and Gené, J. A. (1991). Biochim. Biophys. Acta 1070: 455-460.Google Scholar
  13. Felsenstein, J. (1997). PHYLIP: The Phylogeny Inference Package, Version 3.5, Computer program distributed by the Department of Genetics, University of Washington, Seattle, WA.Google Scholar
  14. Fuly, A. L., de Miranda, A. L., Zingali, R. B., and Guimarães, J. A. (2002). Biochem. Pharmacol. 63: 1589-1597.Google Scholar
  15. Gutiérrez, J. M., Avila, C., Rojas, E., and Cerdas, L. (1988). Toxicon 26: 411-413.Google Scholar
  16. Gutiérrez, J. M., and Lomonte, B. (1997). In: Kini, R. M. (ed.), Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism, John Wiley and Sons, Chichester, pp. 321-352.Google Scholar
  17. de Haas, G. H., Postema, N. M., Nieuwenhuizen, W., and van Deenen, L. L. M. (1968). Biochem. Biophys. Acta 159: 103-110.Google Scholar
  18. Homsi-Brandeburgo, M. I., Queiroz, L. S., Santo-Neto, H., Rodrigues-Simioni, L., and Giglio, J. R. (1988). Toxicon 26: 615-627.Google Scholar
  19. Itzhaki, R. F., and Gill, D. M. (1964). Anal. Biochem. 9: 401-410.Google Scholar
  20. Junqueira-de-Azevedo, I. L., and Ho, P. L. (2002). Gene 299: 279-291.Google Scholar
  21. Kashima, S., Soares, A. M., Roberto, P. G., Pereira, J. O., Astolfi-Filho, S., Cintra, A. C. O., et al. (2002). Biochimie 84: 675-680.Google Scholar
  22. Kashima, S., Roberto, P. G., Soares, A. M., Astolfi-Filho, S., Pereira, J. O., Giuliatti, S., et al. (2004). Biochimie 86 (in press).Google Scholar
  23. Kimura, M. (1980). J. Mol. Evol. 16: 111-120.Google Scholar
  24. Kini, R. M., and Chan, Y. M. (1999). J. Mol. Evol. 48: 127-132.Google Scholar
  25. Lomonte, B., and Carmona, E. (1992). Comp. Biochem. Physiol. 102B: 325-329.Google Scholar
  26. Lu, Q. M., Jin, Y., Wei, J. F., Li, D. S., Zhu, S. W., Wang, W. Y., et al. (2002). Toxicon 40: 1313-1319.Google Scholar
  27. Mosmann, T. (1983). J. Immunol. Methods 65: 55-63.Google Scholar
  28. Moura-da-Silva, A. M., Paine, M. J. I., Diniz, M. R. V., Theakston, R. D. G., and Crampton, J. M. (1995). J. Mol. Evol. 41: 174-179.Google Scholar
  29. Ownby, C. L., Selistre-de-Araújo, H. S., White, S. P., and Fletcher, J. E. (1999). Toxicon 37: 411-445.Google Scholar
  30. Pan, H., Liu, X. L., Ou-Yang, L. L., Yang, G. Z., Zhou, Y. C., Li, Z. P., et al. (1998). Toxicon 36: 1155-1163.Google Scholar
  31. Panini, S. R., Yang, L., Rusinol, A. E., Sinensky, M. S., Bonventre, J. V., and Leslie, C. C. (2001). J. Lipid Res. 42: 1678-1686.Google Scholar
  32. Rodrigues, V. M., Soares, A. M., Mancin, A. C., Fontes, M. R. M., Homsi-Brandeburgo, M. I., and Giglio, J. R. (1998). Comp. Biochem. Physiol. 121A: 215-222.Google Scholar
  33. Rudrammaji, L. M., and Gowda, T. V. (1998). Toxicon 36: 921-932.Google Scholar
  34. Serrano, S. M. T., Reichl, A. P., Mentele, R., Auerswald, E. A., Santoro, M. L., Sampaio, C. A. M., et al. (1999). Arch. Biochem. Biophys. 367: 26-32.Google Scholar
  35. Six, D. A., and Dennis, E. A. (2000). Biochim. Biophys. Acta 1488: 1-19.Google Scholar
  36. Soares, A. M., Anzaloni-Pedrosa, L. H., Fontes, M. R. M., da Silva, R. J., and Giglio, J. R. (1998a). J. Venom. Anim. Toxins 4: 137-142.Google Scholar
  37. Soares, A. M., Rodrigues, V. M., Homsi-Brandeburgo, M. I., Toyama, M. H., Lombardi, F. R., Arni, R. K., et al. (1998b). Toxicon 36: 503-514.Google Scholar
  38. Soares, A. M., Guerra-Sá, R., Borja-Oliveira, C., Rodrigues, V., Rodrigues-Simioni, L., Rodrigues, V., et al. (2000). Arch. Biochem. Biophys. 378: 201-209.Google Scholar
  39. Soares, A. M., Andriao-Escarso, S. H., Bortoleto, R. K., Rodrigues-Simioni, L., Arni, R. K., Ward, R. J., et al. (2001). Arch. Biochem. Biophys. 387: 188-196.Google Scholar
  40. Soares, A. M., and Giglio, J. R. (2003). Toxicon 42: 855-868.Google Scholar
  41. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). Nucl. Acids Res. 24: 4876-4882.Google Scholar
  42. Tsai, I. H., Lu, P. J., Wang, Y. M., Ho, C. L., and Liaw, L. L. (1995). Biochem. J. 311: 895-900.Google Scholar
  43. Tsai, I. H., Wang, Y. M., Au, L. C., Ko, T. P., Chen, Y. H., and Chu, Y. F. et al. (2000). Eur. J. Biochem. 267: 6684-6691.Google Scholar
  44. Tsai, I. H., Wang, Y. M., Chen, Y. H., and Tu, A. T. (2003). Arch. Biochem. Biophys. 411: 289-296.Google Scholar
  45. Valiente, C., Moreno, E., Sittenfeld, A., Lomonte, B., and Gutiérrez, J. M. (1992). Toxicon 30: 815-823.Google Scholar
  46. Vesterberg, O. (1972). Biochim. Biophys. Acta 257: 11-30.Google Scholar
  47. Wang, Y. M., Wang, J. H., and Tsai, I. H. (1996). Toxicon 34: 1191-1196.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Patrícia G. Roberto
    • 1
  • Simone Kashima
    • 1
  • Silvana Marcussi
    • 1
  • José O. Pereira
    • 2
  • Spartaco Astolfi-Filho
    • 2
  • Auro Nomizo
    • 3
  • José R. Giglio
    • 4
  • Marcos R.M. Fontes
    • 5
  • Andreimar M. Soares
    • 1
  • Suzelei C. França
    • 1
  1. 1.Unidade de BiotecnologiaUniversidade de Ribeirão Preto, UNAERPRibeirão Preto-SPBrazil
  2. 2.Faculdade de Ciências AgráriasUniversidade Federal do AmazonasManaus-AMBrazil
  3. 3.Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, FCFRPUniversidade de São PauloRibeirão Preto-SPBrazil
  4. 4.Departamento de Bioquímica e Imunologia, FMRPUniversidade de São PauloRibeirão Preto-SPBrazil
  5. 5.Departamento de Física e Biofísica, IBUniversidade Estadual PaulistaBotucatu-SPBrazil

Personalised recommendations