Advertisement

The Protein Journal

, Volume 23, Issue 2, pp 127–133 | Cite as

The Alcohol-Induced Conformational Changes in Casein Micelles: A New Challenge for the Purification of Colostrinin

  • Marian L. Kruzel
  • Antoni Polanowski
  • Tadeusz Wilusz
  • Agata Sokołowska
  • Magdalena Pacewicz
  • Renata Bednarz
  • Jerzy A. Georgiades
Article

Abstract

Recent advances in protein separation technology have allowed for the isolation of whey proteins and peptides of significant biological importance. In this study, we report a novel method for isolation and purification of the neuroprotective proline-rich polypeptides, also known as Colostrinin (CLN). Although CLN was first isolated from ovine colostrum and characterized as a complex of small molecular peptides, its constituents are present also in other mammal colostrums. The previous purification protocols are very tedious, time consuming, and, due to the diverse characteristics of colostrum, also very difficult to validate. Thus, the aim of this study was to develop a simple protocol with a maximum recovery rate for CLN peptides. Here we demonstrate the two-step extraction/purification method that consists of methanol extraction and ammonium sulfate precipitation as the general principles. When compared with the original material, CLN obtained by this method shows (1) similar pattern of peptides in SDS PAGE, (2) identical amino acid analysis, characterized by high content of proline (22%), a high proportion of nonpolar amino acids, a low percentage of glycine, alanine, arginine, histidine, and no tryptophan, methionine, and cysteine residues, (3) similar pattern of HPLC profiles, and (4) its ability to induce IFN gamma and TNF alpha. More importantly, the protocol for the production of high-quality CLN can be accomplished in less than a 48 h timeframe. In addition, avoidance of excessively harsh conditions preserves the structure and biological activity of the peptides.

Colostrinin extraction immunomodulation proline-rich polypeptide purification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Arakawa, T., Bhat, R., and Timasheff, S. N. (1990). Biochemistry 29: 1924–1931.PubMedGoogle Scholar
  2. Ariyoshi, Y. (1993). Trends in Food Science and Technology 4: 139–144.Google Scholar
  3. Bilikiewicz, A., Gaus, W., Opala, G., Araszkiewicz, A., Kloszewska, I., Bidzan, L., et al.(in press).Google Scholar
  4. Boldogh, I., Liebenthal, D., Hughes, T. K., Juliech, T. L., Georgiades, J. A., Kruzel, M. L., et al. (2003). J Mol Neurosci. 20: 125–134.PubMedGoogle Scholar
  5. Cohen, S. A. (2000). Methods Mol. Biol. 159: 39–47.PubMedGoogle Scholar
  6. Drouet, L., and Caen, J. (1993). J. Dairy Sci. 76: 301–310.PubMedGoogle Scholar
  7. Farrell, H. M., Jr., Kumosinski, T. F., Malin, E. L., and Brown, E. M. (2002). Methods Mol. Biol. 172: 97–140.PubMedGoogle Scholar
  8. Goldman, A. S. (1993). Pediatr. Infect. Dis. J. 12: 664–671.PubMedGoogle Scholar
  9. Hartmann, P. E., Rattigan, S., Saint, L., and Supriyana, O. (1985). Oxf. Rev. Reprod. Biol. 7: 118–167.PubMedGoogle Scholar
  10. Hirayama, M., Toyota, K., Hidaka, H., and Naito, H. (1992). Biosci. Biotech. Biochem. 56: 1128–1129.Google Scholar
  11. Inglot, A. D., Janusz, M., and Lisowski, J. (1996). Arch. Immunol. Ther. Exp. 44: 215–224.Google Scholar
  12. Janusz, M., and Lisowski, J. (1993). Arch. Immunol. Ther. Exp. 41: 275–279.Google Scholar
  13. Janusz, M., Lisowski, J., and Francek, F. (1974). FEBS Lett. 49: 276–279.PubMedGoogle Scholar
  14. Janusz, M., Staroscik, K., Zimecki, M., Wieczorek, Z., and Lisowski, J. (1981). Biochem. J. 199: 9–15.PubMedGoogle Scholar
  15. Jenness, R. (1979). Semin. Perinatol. 3: 225–239.PubMedGoogle Scholar
  16. Kruzel, M., Janusz, M., Lisowski, J., Fischleight, R., and Georgiades, J. (2001). J. Mol Neurosci. 17: 115–125.Google Scholar
  17. Lahov, E., and Regelson, W. (1996). Fd. Chem. Toxic. 34: 131–145.Google Scholar
  18. Lee, Y. S., Noguchi, T., and Naito, H. (1980). Br. J. Nutr. 43: 457–467.PubMedGoogle Scholar
  19. Leszek, J., Inglot, A. D., Janusz, M., Lisowski, J., Krukowska, K., and Georgiades, J. A. (1999). Arch. Immunol. Ther. Exp. 47: 377–385.Google Scholar
  20. Leszek, J., Bidzan, L., Bilikiewicz, A., Kiejna, A., Janusz, M., Dubowska-Inglot, A., et al. (2000). Yearbook of Psychogeriatry 3: 13–23.Google Scholar
  21. Li, Q. Y., Cui, Z. F., and Pepper, D. S. (1997). J. Membr. Sci. 136: 181–190.Google Scholar
  22. Nakatsuka, S., and Michaels, A. L. (1992). J. Membr. Sci. 69: 189–211.Google Scholar
  23. van Reis, R., Gadam, S., Frautschy, L. N., Orlando, S., Goodrich, E. M., Saksena, S., et al. (1997). Biotechnol. Bioeng. 56: 71–82.Google Scholar
  24. Sanchez-Pozo, A., Lopez, J., Pita, M. L., Izquierdo, A., Guerrero, E., Sanchez-Medina, F., et al. (1986). Ann. Nutr. Metab. 30: 15–20.PubMedGoogle Scholar
  25. Schägger, H., and von Jagow, G. (1987). Anal. Biochem. 166: 368–379.PubMedGoogle Scholar
  26. Schellman, J. A. (1987). Biopolymers 26: 549–559.PubMedGoogle Scholar
  27. Schlimme, E., and Meisel, H. (1995). Die Nahrung 39: 1–20.PubMedGoogle Scholar
  28. Slattery, C. W. (1976). Dairy Sci. 59: 1547–1556.Google Scholar
  29. Stanton, J., Boldogh, I., Georgiades, J., and Hughes, T. K. (2001). Yearbook of Psychogeriatry 4: 67–75.Google Scholar
  30. Svensson, M., Hakansson, A., Mossberg, A. K., Linse, S., and Svanborg, C. (2000). Proc. Natl. Acad. Sci. U. S. A. 97: 4221–4226.PubMedGoogle Scholar
  31. Wong, C. W., Seow, H. F., Liu, A. H., Husband, A. J., Smithers, G. W., and Watson, D. J. (1996). Immunol Cell Biol 74: 323–329.PubMedGoogle Scholar
  32. Xiao, T., Gardner, K. H., and Sprang, S. R. (2002). Proc Natl Acad Sci U. S. A. 99: 11151–11156.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Marian L. Kruzel
  • Antoni Polanowski
  • Tadeusz Wilusz
  • Agata Sokołowska
  • Magdalena Pacewicz
  • Renata Bednarz
  • Jerzy A. Georgiades

There are no affiliations available

Personalised recommendations