The Protein Journal

, Volume 23, Issue 1, pp 95–101 | Cite as

Conformation-Dependent Interaction of α-Lactalbumin with Model and Biological Membranes: A Spin-Label ESR Study

  • Dipankar Chaudhuri
  • Mahesh Narayan
  • Lawrence J. Berliner

Abstract

α-Lactalbumin (α-LA) is biosynthesized and stored at the smooth endoplasmic reticulum (ER), then transferred to the Golgi lumen when prolactin stimulation of lactose biosynthesis and secretion takes place. Because both environments are composed of membranes, it was of interest to examine the interactions of α-LA with relevant model and biological membranes. Using the ESR spin-labeled fatty acid analog 5-doxyl stearic acid, we found evidence reflecting the insertion of “acid-shocked” molten globule (MG) α-LA into lecithin or phosphatidylserine (PS) multi-lamellar vesicles. An additional ∼3 G immobilization was observed in the α-LA-lecithin sample versus the lipid alone. With PS, the increased immobilization was almost 6 G, reflecting an enhanced effect caused by strong electrostatic interactions between the positively charged protein with the negatively charged headgroup at pH 2.4. This was also reflected in the broadening of the PS:α-LA phase transition. Additionally, we have demonstrated that α-LA in its apo-form also shows similar insertion characteristics with both model and natural lipid membranes. Upon addition of calcium, the apo-form is released from the membrane as the Ca2+-bound protein.

α-lactalbumin 5-doxylstearic acid electron spin resonance milk fat globule membrane multi-lamellar vesicles spin label 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, K. R., Ren, J., Stuart, D. I., Phillips, D. C., and Fenna, R. E. (1989). J. Mol. Biol. 208: 99–107.Google Scholar
  2. Acharya, K. R., Ren, J., Stuart, D. I., Phillips, D. C., and Fenna, R. E. (1991). J. Mol. Biol. 221: 571–581.Google Scholar
  3. Banuelos, S., and Muga, A. (1995). J. Biol. Chem. 270: 29910–29915.Google Scholar
  4. Banuelos, S., and Muga, A. (1996). Biochemistry 35: 3892–3898.Google Scholar
  5. Berliner, L. J., and Koga, K. (1987). Biochemistry 26: 3006–3009.Google Scholar
  6. Brew, K., Vanaman, T. C., and Hill, R. L. (1967). J. Biol. Chem. 242: 3747–3749.Google Scholar
  7. Brodbeck, U., and Ebner, K. E. (1976). J. Biol. Chem. 241: 762–764.Google Scholar
  8. Brown, E. M. (1984). J. Dairy Sci. 67: 713–722.Google Scholar
  9. Browne, W. J., North, A. C. T., Phillips, D. C., and Brew, K. (1969). J. Mol. Biol. 42: 65–86.Google Scholar
  10. Cawthern, K. M., Permyakov, E. A., and Berliner, L. J. (1996). Protein Sci. 5: 1394–1405.Google Scholar
  11. Charlwood, J., Hanrahan, S., Tyldesley, R., Langridge, J., Dwek, M., Camilleri, P. (2002). Anal. Biochem. 301: 314–324.Google Scholar
  12. Dolgikh, D. A., Gilmarshov, R. I., Braznikov, E. V., Bychkova, V. O., Semisotnov, G. V., Venjaminov, S. Y., and Ptitsyn, O. B. (1981). FEBS Lett. 136: 311–315.Google Scholar
  13. Dufour, E., Subirade, M., Loupil, F. and Riaublanc, A. (1999). Lait 9, 217–228.Google Scholar
  14. Ebner, K. E. (1970). Accounts Chem. Res. 3: 41–47.Google Scholar
  15. Ebner, K. E. (1973). In Boyer, P. D. (ed.), The Enzymes 9: pp. 363–377.Google Scholar
  16. Grishchenko, V. M., Kalinichenko, L. P., Deikus, G. Y., Veprintsev, D. B., Cawthern, K. M., Berliner, L. J., and Permyakov, E. A. (1996). Biochemistry and Molecular Biology International 38: 453–466.Google Scholar
  17. Halskau, O., Froystein, N. A., Muga, A., Martinez, A. (2002). J. Mol. Biol. 321: 99–110.Google Scholar
  18. Hanssens, I., Houthuys, C., Herremann, W., and VanCauwelaert, F. H. (1980). Biochim. Biophys. Acta 602: 539–557.Google Scholar
  19. Hanssens, I., Herreman, W., and Van Cauwelaert, F. H. (1983). Biochim. Biophys. Acta 728: 291–304.Google Scholar
  20. Hanssens, I., Van Ceunebroeck, J. C., Pottel, H., Preaux, G., and Van Cauwelaert, F. H., (1985). Biochim. Biophys. Acta 817: 154–164.Google Scholar
  21. Herreman, W., Van Tomout, P., Van Cauwelaert, F. H., and Hanssens, I. (1981a). Biochim. Biophys. Acta. 640: 419–429.Google Scholar
  22. Herreman, W., VanCauwelaert, F. H., and Hanssens, I. (1981b). Biochem. International 2: 237–242.Google Scholar
  23. Hill, R. L., and Brew, K. (1975). Adv. Enzymol. Relat. Areas Mol. Biol. 43: 411–490.Google Scholar
  24. Hiraoka, Y., Segawa, T., Kuwajima, K., Sugai, S., and Murai, N. (1980). Biochim. Biophys. Res. Comm. 95: 1098–1104.Google Scholar
  25. Huang, C., and Thompson, T. E. (1970). Meth. Enzymol. 32: 485–489.Google Scholar
  26. Lala, A. K., and Kaul, P. (1992). J. Biol. Chem. 267: 19914–19918.Google Scholar
  27. Lala, A. K., Kaul, P., and Ratnam, P. B. (1995). J. Protein Chem. 14: 601–609.Google Scholar
  28. Marsh, D. (1981). In Membrane Spectroscopy, Springer Verlag, pp. 51–157.Google Scholar
  29. Martin, J., Langer, T., Boteva, R., Schramel, A., Horwich, A. L., and Hartl, F.-U. (1991). Nature 352: 36–42.Google Scholar
  30. McKenzie, H. A., and White, F. H. (1991). Adv. Protein Chem. 41: 173–315.Google Scholar
  31. Mitranic, M. M., and Moscarello, M. A. (1985). Biochim. Biophys. Acta 816: 182–186.Google Scholar
  32. Mitranic, M. M., Boggs, J. M., and Moscarello, M. A. (1983). J. Biol. Chem. 258: 8630–8636.Google Scholar
  33. Mitranic, M. M., Paquet, M. R., and Moscarello, M. A. (1988). Biochim. Biophys. Acta 958: 277–284.Google Scholar
  34. Montich, G. G., and Marsh, D. (1995). Biochemistry 34: 13139–13145.Google Scholar
  35. Mulqueen, P. M., and Kronman, M. J. (1982). Arch. Biochem. Biophys. 215: 28–39.Google Scholar
  36. Murakami, K., Andree, P. J., and Berliner, L. J. (1982). Biochemistry 21: 5488–5494.Google Scholar
  37. Musci, G., and Berliner, L. J. (1985). Biochemistry 24: 3852–3856.Google Scholar
  38. Ohgishi, M., and Wada, A. (1983). FEBS Lett. 164: 21–24.Google Scholar
  39. Ostrovsky, A. V., Kalinichenko, L. P., Emelyanenko, V. I., Klimanov, A. V., and Permyakov, E. A. (1988). Biophys. Chem. 30: 105–115.Google Scholar
  40. Patton, F., and Keenan, T. (1975). Biochim. Biophys. Acta 415: 273–309.Google Scholar
  41. Permyakov, E. A., Kalinichenko, L. P., Morozova, L. A., Yamolenko, V. V., and Burstein, E. A. (1981a). Biochim. Biophys. Res. Comm. 100: 191–197.Google Scholar
  42. Permyakov, E. A., Kalinichenko, L. P., Morozova, L. A., Yamolenko, V. V., and Burstein, E. A. (1981b). Biochim. Biophys. Res. Comm. 102: 1–7.Google Scholar
  43. Permyakov, E. A., Morozova, L. A., and Burstein, E. A. (1985). Biophys. Chem. 21: 21–31.Google Scholar
  44. Reboiras, M. D., and Marsh, D. (1991). Biochim. Biophys. Acta 1053: 259–264.Google Scholar
  45. Rothman, J. E., Miller, R. L., and Urbani, L. J. (1984). J. Cell Biol. 99: 260–271.Google Scholar
  46. Rottem, S., Hubbell, W., Hayflick, L., and McConnell, H. M. (1970). Biochim. Biophys. Acta 219: 104–113.Google Scholar
  47. Stuart, D. I., Acharya, K. R., Walker, N. P. C., Smith, S. G., Lewis, M., and Phillips, D. C. (1986). Nature 324: 84–87.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Dipankar Chaudhuri
  • Mahesh Narayan
  • Lawrence J. Berliner

There are no affiliations available

Personalised recommendations