The Protein Journal

, Volume 23, Issue 1, pp 79–83 | Cite as

Detection of Tryptophan to Tryptophan Energy Transfer in Proteins

  • Pierre D.J. Moens
  • Michael K. Helms
  • David M. Jameson

Abstract

Förster resonance energy transfer (FRET) studies usually involve observation of intensity or life-time changes in the donor or acceptor molecule and usually these donor and acceptor molecules differ (heterotransfer). The use of polarization to monitor FRET is far less common, although it was one of the first methods utilized. In 1960, Weber demonstrated that homotransfer between tryptophan molecules contributes to depolarization. He also discovered that the efficiency of homotransfer becomes much less effective upon excitation near the red-edge of the absorption. This “red-edge effect” was shown to be a general phenomenon of homotransfer. We have utilized Weber's red-edge effect to study tryptophan homotransfer in proteins. Specifically, we determined the polarization of the tryptophan fluorescence upon excitation at 295 nm and 310 nm (near the red-edge). Rotational diffusion leads to depolarization of the emission excited at either 295 nm or 310 nm, but homotransfer only contributes to depolarization upon excitation at 295 nm. Hence, the 310/295 polarization ratio gives an indication of tryptophan to tryptophan energy transfer. In single tryptophan systems, the 310/295 ratios are generally below 2 whereas in multi-tryptophan systems, the 310/295 ratios can be greater than 3.

Foörster resonance energy transfer (FRET) polarization red-edge effect tryptophan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., and Weber, G. (1966). Arch. Biochem. Biophys. 116: 207–223.Google Scholar
  2. Clegg, R. M. (1996). Fluorescence Resonance Energy Transfer. In: Wang, X. F., Herman, B. (eds.), Fluorescence Imaging Spectroscopy and Microscopy, John Wiley & Sons, New York, pp. 179–252.Google Scholar
  3. Dalby, A., Dauter, Z., and Littlechild, J. A. (1999). Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications. Protein Sci. 8: 291–297.Google Scholar
  4. dos Remedios, C. G., and Moens, P. D. J. (1999). Resonance Energy Transfer in Proteins. In: Andrews, D. L., and Demidov, A. A. (eds.), Resonance Energy Transfer, John Wiley & Sons, New York.Google Scholar
  5. Eftink, M. R., and Jameson, D. M. (1982). Biochemistry 21(18): 4443–9.Google Scholar
  6. Förster, T. (1946). Energiewanderung und Fluoreszenz. Naturwissenschaften 6: 166–175.Google Scholar
  7. Förster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. (Leipzig) 2: 55–75.Google Scholar
  8. Förster, T. (1960). Transfer Mechanisms of Electronic Excitation. Discuss. Faraday Soc. Aberdeen: University Press, Aberdeen. pp. 7–17.Google Scholar
  9. Gaviola, E., and Pringsheim, P. (1924). Einfluss der Konzentration auf die Polarisation der Fluoreszenz von Farbstofflosenungen. Z. Physik 24: 24–36.Google Scholar
  10. Griep, M., and McHenry, C. (1990). J. Biol. Chem. 265: 20356–20363.Google Scholar
  11. Hamman, B. D., Oleinikov, A. V., Jokhadze, G. G., Traut, R. R., and Jameson, D. M. (1996). Biochemistry 35(51): 16680–6.Google Scholar
  12. Helms, M. K., Hazlett, T. L., Mizuguchi, H., Hasemann, C. A., Uyeda, K., and Jameson, D. M. (1998). Biochemistry 37(40): 14057–14064.Google Scholar
  13. Jameson, D., and Croney, J. (2003). Comb. Chem. High Throughput Screen. 6: 167–176.Google Scholar
  14. Jameson, D. M., Croney, J. C., and Moens, P. D. J. (2003). Methods Enzymol. 360: 1–43.Google Scholar
  15. Jameson, D. M., Gratton, E., and Eccleston, J. F. (1987). Biochemistry 26(13): 3894–901.Google Scholar
  16. Lakowicz, J. R. (1999). Principles of Fluorescence Spectroscopy. Kluwer Academic, New York.Google Scholar
  17. Perrin, F. (1932). Annales de Physiques XVII: 283–314.Google Scholar
  18. Ramaswamy, S., Scholze, M., and Plapp, B. V. (1997). Biochemistry 36: 3522–3527.Google Scholar
  19. Selvin, P. R. (1995). Methods Enzymol. 246: 300–34.Google Scholar
  20. Valeur, B. (2002). Molecular Fluorescence: Principles and Applications. Wiley-VCH, Weinheim, Germany.Google Scholar
  21. Van Der Meer, B. W., Coker, G., and Chen, S-Y. S. (1991). Resonance Energy Transfer. Theory and Data. Wiley-VCH, New York.Google Scholar
  22. Vavilov, S. I. (1927). Z. Physik 42: 311–318.Google Scholar
  23. Weber, G. (1954). Trans. Faraday Soc. 50: 552–556.Google Scholar
  24. Weber, G. (1956). J. Opt. Soc. Amer. 46: 962–970.Google Scholar
  25. Weber, G. (1960a). Biochem. J. 75: 335–345.Google Scholar
  26. Weber, G. (1960b). Biochem. J. 75: 345–352.Google Scholar
  27. Weber, G., and Shinitzky, M. (1970). Proc. Natl. Acad. Sci. 65(4): 823–830.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Pierre D.J. Moens
  • Michael K. Helms
  • David M. Jameson

There are no affiliations available

Personalised recommendations