The Protein Journal

, Volume 23, Issue 1, pp 53–64 | Cite as

Role of Amino Acid Residues on the GS Region of Stichopus Arginine Kinase and Danio Creatine Kinase

  • Kouji Uda
  • Tomohiko Suzuki


Stichopus arginine kinase (AK) is a unique enzyme in that it evolved not from the AK gene but from the creatine kinase (CK) gene: the entire amino acid sequence is homologous with other CKs apart from the guanidine specificity region (GS region), which is identical in structure to that of AK. Ten independent mutations were introduced around the GS region in Stichopus AK. When an insertion or deletion was introduced near the GS region, the Vmax of the mutant enzyme was dramatically decreased to less than 0.1% of the wild type, suggesting that the length of the GS region is crucial for the recognition of the guanidine substrate. Replacement of Phe63 and Leu65 to Gly in the Stichopus enzyme caused a remarkable increase in the Kmarg. This indicates that Phe63 and Leu65 are associated with the arginine substrate-binding affinity. The hydrogen bond formed between the Asp62 and Arg193 residues is thought to play a key role in stabilizing the closed substrate-bound structure of AK. Mutants that eliminated this hydrogen bond had a considerably decreased Vmax, accompanied by a threefold increase in Kmarg. It is noted that the value of the Kmarg of the mutants became very close to the Kdarg value of the wild type. Six independent mutations were introduced in the GS region of Danio M-CK. Almost equivalent values of Kmcr and Kdcr in all of the mutants indicated that a typical synergism was completely lost. The results suggested that the Ile69 to Gly mutant, displaying a high Kmcr and a low Vmax, plays an important role in creatine-binding. This is consistent with the observation that in the structure of Torpedo CK, Ile69 provides a hydrophobic pocket to optimize creatine-binding.

Arginine kinase creatine kinase kinetic parameter Stichopus Danio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anosike, E. O., Moreland, B. H., and Watts, D. C. (1975). Biochem. J. 145: 535–543.Google Scholar
  2. Cantwell, J. S., Novak, W. R., Wang, P. F., McLeish, M. J., Kenyon, G. L., and Babbitt, P. C. (2001). Biochemistry 40: 3056–3061.Google Scholar
  3. Chen, L. H., Borders, C. L., Jr, Vasquez, J. R., and Kenyon, G. L. (1996), Biochemistry 35: 7895–7902.Google Scholar
  4. Eder, M., Schlattner, U., Becker, A., Wallimann, T., Kabsch, W., and Fritz-Wolf, K. (1999). Protein Sci. 8: 2258–2269.Google Scholar
  5. Eder, M., Stolz, M., Wallimann, T., and Schlattner, U. (2000). J. Biol. Chem. 275: 27094–2709.Google Scholar
  6. Edmiston, P. L., Schavolt, K. L., Kersteen, E. A., Moore, N. R., and Borders, C. L. (2001). Biochim. Biophys. Acta 1546: 291–298.Google Scholar
  7. Ellington, W. R. (1989). J. Exp. Biol. 143: 177–194.Google Scholar
  8. Ellington, W. R. (2001). Annu. Rev. Physiol. 63: 289–325.Google Scholar
  9. Forstner, M., Muller, A., Stolz, M., and Wallimann, T. (1997). Protein Sci. 6: 331–339.Google Scholar
  10. Forstner, M., Kriechbaum, M., Laggner, P., and Wallimann, T. (1998). Biophys. J. 75: 1016–1023.Google Scholar
  11. Fritz-Wolf, K., Schnyder, T., Wallimann, T., and Kabsch, W. (1996). Nature 381: 341–345.Google Scholar
  12. Furter, R., Furter-Graves, E. M., and Wallimann, T. (1993). Biochemistry 32: 7022–7029.Google Scholar
  13. Gross, M., Furter-Graves, E. M., Wallimann, T., Eppenberger, H. M., and Furter, R. (1994). Protein Sci. 3: 1058–1068.Google Scholar
  14. Kenyon, G. L. and Reed, G. H. (1986). Adv. Enzymol. 54: 367–426.Google Scholar
  15. Lahiri, S. D., Wang, P. F., Babbitt, P. C., McLeish, M. J., Kenyon, G. L., and Allen, K. N. (2002). Biochemistry 41: 13861–13867.Google Scholar
  16. Lin, L., Perryman, M. B., Friedman, D., Roberts, R., and Ma, T. S. (1994). Biochim. Biophys. Acta 1206: 97–104.Google Scholar
  17. Morrison, J. F. (1973). In: Boyer, P. C. (ed.), The Enzymes. Arginine Kinase and Other Invertebrate Guanidino Kinases, Academic Press, New York, pp. 457–486.Google Scholar
  18. Mourad-Terzian, T., Steghens, J. P., Min, K. L., Collombel, C., and Bozon, D. (2000). FEBS Lett. 475: 22–26.Google Scholar
  19. Muhlebach, S. M., Gross, M., Wirz, T., Walliman, T., Perriard, J-C., and Wyss, M. (1994). Mol. Cell. Biochem. 133/134: 245–262.Google Scholar
  20. Perraut, C., Clottes, E., Leydier, C., Vial, C., and Marcillat, O. (1998). Proteins 32: 43–51.Google Scholar
  21. Raimbault, C., Perraut, C., Marcillat, O., Buchet, R., and Vial, C. (1997). Eur J Biochem. 250: 773–782.Google Scholar
  22. Rao, J. K., Bujacz, G., and Wlodawer, A. (1998). FEBS Lett. 439: 133–137.Google Scholar
  23. Reddy, S. R., and Watts, D. C. (1994). Comp. Biochem. Physiol. (Part B) Biochem. Mol. Biol. 108: 73–78.Google Scholar
  24. Seals, J. D., and Grossman, S. H. (1988). Comp. Biochem. Physiol. 89B: 701–707.Google Scholar
  25. Strong, S. J., and Ellington, W. R. (1995). Biochim Biophys Acta. 1246: 197–200.Google Scholar
  26. Strong, S. J., and Ellington, W. R. (1996). Comp. Biochem. Physiol. (Part B) Biochem. Mol. Biol. 113: 809–816.Google Scholar
  27. Suzuki, T., and Furukohri, T. (1994) J. Mol. Biol. 237: 353–357.Google Scholar
  28. Suzuki, T., Kawasaki, Y., and Furukohri, T. (1997a). Biochem. J. 328: 301–306.Google Scholar
  29. Suzuki, T., Kawasaki, Y., Furukohri, T., and Ellington, W. R. (1997b). Biochim. Biophys. Acta 1343: 152–159.Google Scholar
  30. Suzuki, T., Kamidochi, M., Inoue, N., Kawamichi, H., Yazawa, Y., Furukohri, T., and Ellington, R. W. (1999). Biochem. J. 340: 671–675.Google Scholar
  31. Suzuki, T., Yamamoto, Y., and Umekawa, M. (2000a). Biochem. J. 351: 579–585.Google Scholar
  32. Suzuki, T., Fukuta, H., Nagato, H., and Umekawa, M. (2000b). J. Biol. Chem. 275: 23884–23890.Google Scholar
  33. Suzuki, T., Sugimura, N., Taniguchi, T., Unemi, Y., Murata, T., Hayashida, M., Yokouchi, K., Uda, K., and Furukohri, T. (2002). Int. J. Biochem. Cell Biol. 34: 1221–1229.Google Scholar
  34. Suzuki, T., Tomoyuki, T., and Uda, K. (2003). FEBS Lett. 533: 95–98.Google Scholar
  35. van Thoai, N. (1968). In: van Thoai, N., and Roche, J. (eds.), Homologous Phosphagen Phosphokinases, Gordon and Breach, New York, pp. 199–229.Google Scholar
  36. Wang, P. F., McLeish, M. J., Kneen, M. M., Lee, G., and Kenyon, G. L. (2001). Biochemistry 40: 11698–11705.Google Scholar
  37. Watts, D. C. (1968). In: van Thoai, N., and Roche, J. (eds.) The Origin and Evolution of Phosphagen Phosphotransferases, Gordon and Breach, New York, pp. 279–296.Google Scholar
  38. Wyss, M., Smeitink, J., Wevers, R. A., and Wallimann, T. (1992). Biochim. Biophys. Acta 1102: 119–166.Google Scholar
  39. Wyss, M., and Kaddurah-Daouk, R. (2000). Physiol. Rev. 80: 1107–1213.Google Scholar
  40. Yousef, M. S., Clark, S. A., Pruett, P. K., Somasundaram, T., Ellington, W. R., and Chapman, M. S. (2003). Protein Sci. 12: 103–111.Google Scholar
  41. Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W. R., and Chapman, M. (1998). Proc. Natl. Acad. Sci. U. S. A. 95: 8449–8454.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Kouji Uda
  • Tomohiko Suzuki

There are no affiliations available

Personalised recommendations