Journal of Protein Chemistry

, Volume 22, Issue 6, pp 543–554 | Cite as

Characterization of a Proteinase Inhibitor from Cajanus cajan (L.)

Article

Abstract

A protein proteinase inhibitor (PI) has been purified from pigeonpea Cajanus cajan (L.) PUSA 33 variety by acetic-acid precipitation, salt fractionation and chromatography on a DEAE-Cellulose column. The content of inhibitor was found to be 15 mg/20 g dry weight of pulse. The molecular weight of the inhibitor as determined by SDS-PAGE under reducing conditions was found to be about 14,000. It showed inhibitory activity toward proteolytic enzymes belonging to the serine protease group, namely trypsin and α-chymotrypsin. The inhibitory activity was stable over a wide range of pH and temperatures. Estimation of sulfhydryl groups yielded one free cysteine and at least two disulfide linkages. N-terminal sequence homology suggests that it belongs to the Kunitz inhibitor family. Structural analysis by circular dichroism shows that the inhibitor possesses a largely disordered structure.

Cajanus cajan circular dichroism fluorescence quenching Kunitz inhibitor N-terminal sequence proteinase inhibitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Chou, I. N., Black, P. H., Roblin, R. O. (1974). Proc. Natl. Acad. Sci. USA 71: 1748-1752.Google Scholar
  2. Clem Gruen, L., Tao, Z-J., Kortt, A. A. (1984). Biochim. Biophys. Acta 791: 285-293.Google Scholar
  3. Connelli, M., Cioni, P., Romagnoli, A., Gabellieri, E., Balestreri, E., Felicioli, R. (1985). Arch. Biochem. Biophys. 238: 206-212.Google Scholar
  4. Gegenheimer, P. (1990). Meth. Enzymol. 182: 174-193.Google Scholar
  5. Giri, A. P., Kachole, M. S. (1998). Phytochemistry 47: 197-202.Google Scholar
  6. Goodwin, W., Morton, R. A. (1946). Biochem. J. 40: 628-632.Google Scholar
  7. Habeeb, A. F. S. A. (1972). Meth. Enzymol. 25: 457-464.Google Scholar
  8. Jirgensons, B., Kawabata, M., Capetillo, S. (1969). Makromol. Chem. 125: 126-135.Google Scholar
  9. Joubert, F. J. (1981). Hoppe-Seyler';s Z. Physiol. Chem. 362: 1515-1521.Google Scholar
  10. Kouzuma, Y., Suetake, M., Kimura, M., Yamasaki, N. (1992). Biosc. Biotech. Biochem. 56: 1819-1824.Google Scholar
  11. Laemmli, U. K. (1970). Nature 227: 680-685.Google Scholar
  12. Lakowicz, J. R. (1983). In Principles of Fluorescence Spectroscopy, Plenum Press, New York.Google Scholar
  13. Laskowski, M. Jr., Kato, I. (1980). Ann. Rev. Biochem. 49: 593-626.Google Scholar
  14. Lehrer, S. S., Learis, P. C. (1978). In Methods Enzymol (Hirs, C. H. W., Timasheff, S. N., eds.), Vol. 49, Academic Press, pp. 222-236.Google Scholar
  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, J. J. (1951). J. Biol. Chem. 193: 265-275.Google Scholar
  16. Macedo, M. L. R., Matos, D. G. G., Machado, O. L. T., Marangoni, S., and Novelloi, J. C. (2000). Phytochemistry 54: 553-558.Google Scholar
  17. Mello, G. C., Olivia, M. L. V., Sumikawa, J. T., Machado, O. L. T., Marangoni, S., Novello, J. C., and Macedo, M. L. R. (2002). J. Prot. Chem. 20: 625-632.Google Scholar
  18. Mokhtar, N. M., El-Aaser, A. A., El-Bolkainy, M. N., Ibrahim, A. A., El-Din, N. B., Moharram, N. Z. (1988). Eur. J. Cancer Clin. Oncol. 24: 403-411.Google Scholar
  19. Mulimani, V. H., Paramjyothi, S. (1994). Plant Foods Hum. Nutr. 46: 103-107.Google Scholar
  20. Pearce, G., Sy, L., Russel, C., Ryan, C. A., Hass, M. (1982). Arch. Biochem. Biophys. 213: 456-462.Google Scholar
  21. Qasim, M. A., Salahuddin, A. (1977). Biochim. Biophys. Acta 490: 515-522.Google Scholar
  22. Ramasarma, P. R., Rao, A. G. A., Rao, D. R. (1994). Biochim. Biophys. Acta 1248: 35-42.Google Scholar
  23. Rao, P. U., Deosthale, Y. G. (1982). J. Sci. Food Agric. 33: 1013-1016.Google Scholar
  24. Reed, W., Lateef, S. S. (1990). In The Pigeonpea (Nene, Y. L., Hall, S. P., Sheila, V. K., eds.), CAB International, Wallingford, p. 349.Google Scholar
  25. Richardson, M., Campos, F. A. P., Xavier-Filho, J., Macedo, M. L. R., Maia, G. M. C., Yarwood, A. (1986). Biochim. Biophys. Acta 872: 134-140.Google Scholar
  26. Rockett, K. A., Playfair, J. H. L., Ashall, F., Targetl, G. A. T., Anjliker, H., Shaw, E. (1990). FEBS Lett. 295: 257-260.Google Scholar
  27. Ryan, C. A. (1990). Annu. Rev. Phytopathol. 28: 425-449.Google Scholar
  28. Ryan, C. A. (1981). In The Biochemistry of Plants (Marcus, A., ed.), Academic Press, New York, pp. 6351-6370.Google Scholar
  29. Salahuddin, A., Khan, R. H. (1997). J. Prot. Chem. 17: 181-185.Google Scholar
  30. Salunkhe, D. K., Chavan, J. K., Kadam, S. S. (1986). CRC Crit. Rev. Food Sci. Nutr. 23: 103-141.Google Scholar
  31. Schelp, F. B., Pongpaew, P. (1988). Int. J. Epidemiol. 17: 287-292.Google Scholar
  32. Schmid, F. X. (1990). In Protein Structure: A Practical Approach (Creighton, T. E., ed.), IR L Press, Oxford, pp. 251-285.Google Scholar
  33. Schnebli, H. P., Burger, M. M. (1972). Proc. Natl. Acad. Sci. USA 69: 3825-3827.Google Scholar
  34. Singh, U. (1988). Plant Foods Hum. Nutr. 38: 251-261.Google Scholar
  35. Singh, U., Jain, K. C., Jambunathan, R., Faris, D. G. (1984). J. Food Sci. 49: 799-802.Google Scholar
  36. Somogyi, B., Papp, S., Rosenbery, A., Seres, I., Matko, J., Welch, G. R., Nagy, P. (1985). Biochemistry 24: 6674-6679.Google Scholar
  37. Spande, T. F., Witkop, B. (1972). Meth. Enzymol. 25: 498-506.Google Scholar
  38. Sweet, R. M., Wright, H. T., Janin, J., Chotia, C. H., Blow, D. M. (1974). Biochemistry 13: 4214-4228.Google Scholar
  39. Teale, F. W. J., Weber, G. (1957). Biochem. J. 65: 476.Google Scholar
  40. Ussuf, K. K., Laxmi, N. H., Mitra, R. (2001). Current Science 80: 847-853.Google Scholar
  41. Venyaminov, S. Y., Yang, J. T. (1996). In Circular Dichroism and the Conformational Analysis of Biomolecules (Fasman, G. D., ed.), Plenum Press, New York, pp. 69-107.Google Scholar
  42. Vonderfecht, S. L., Miskuff, R. L., Wee, S. B., Sato, S., Tidwell, R. R., Geratz, J. D., Yolken, R. H. (1988). J. Clin. Invest. 82: 2011-2016.Google Scholar
  43. Weed, W. G., McGandy, R. B., Kennedy, A. R. (1985). Carcinogenesis 6: 1239-1241.Google Scholar
  44. Woody, R. W., Dunker, A. K. (1996). In Circular Dichroism and the Conformational Analysis of Biomolecules (Fasman, G. D., ed.), Plenum Press, New York, pp. 109-157.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia

Personalised recommendations