Advertisement

Journal of Pharmacokinetics and Pharmacodynamics

, Volume 30, Issue 5, pp 315–336 | Cite as

A Two-Part Mixture Model for Longitudinal Adverse Event Severity Data

  • Kenneth G. KowalskiEmail author
  • Lynn McFadyen
  • Matthew M. Hutmacher
  • Bill Frame
  • Raymond Miller
Article

Abstract

We fit a mixed effects logistic regression model to longitudinal adverse event (AE) severity data (four-point ordered categorical response) to describe the dose-AE severity response for an investigational drug. The distribution of the predicted interindividual random effects (Bayes predictions) was extremely bimodal. This extreme bimodality indicated that biased parameter estimates and poor predictive performance were likely. The distribution's primary mode was composed of patients that did not experience an AE. Moreover, the Bayes predictions of these non-AE patients were nearly degenerative; i.e., the predictions were nearly identical. To resolve this extreme bimodality we propose using a two-part mixture modeling approach. The first part models the incidence of AE's, and the second part models the severity grade given the patient had an AE. Unconditional probability predictions are calculated by mixing the incidence and severity model probability predictions. We also report results of simulation studies, which assess the predictive and statistical (bias and precision) performance of our approach.

adverse events nonlinear mixed effects modeling empirical Bayes predictions mixture model model misspecification NONMEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. K. Gupta, G. Sathyan, E. A. Lindemulder, P. Ho, L. B. Sheiner, and L. Aarons. Quantitative characterization of therapeutic index: Application of mixed-effects modeling to evaluate oxybutynin dose-effcacy and dose-side effect relationships. Clin. Pharmacol. Ther. 65:672-684 (1999).Google Scholar
  2. 2.
    G. Graham, S. Gupta, and L. Aarons. Determination of an optimal dosage regimen using a Bayesian decision analysis of effcacy and adverse event data. J. Pharmacokin. Pharmacodynam. 29:67-88 (2002).Google Scholar
  3. 3.
    L. B. Sheiner. A new approach to the analysis of analgesic drug trials: Illustrated with bromfenac data. Clin. Pharmacol. Ther. 56:309-322 (1994).Google Scholar
  4. 4.
    J. W. Mandema and D. R. Stanski. Population pharmacodynamic model for ketorolac analgesia. Clin. Pharmacol. Ther. 60:619-635 (1996).Google Scholar
  5. 5.
    L. B. Sheiner, S. L. Beal, and A. Dunne. Analysis of nonrandomly censored ordered categorical longitudinal data from analgesic trials. JASA 92:1235-1244 (1997).Google Scholar
  6. 6.
    R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics, Macmillan Publishing Co., Inc., New York, 1978, p. 183.Google Scholar
  7. 7.
    V. T. Farewell. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38:1041-1046 (1982).Google Scholar
  8. 8.
    M. H. Chen and J. G. Ibrahim. Maximum likelihood methods for cure rate models with missing covariates. Biometrics 57:43-52 (2001).Google Scholar
  9. 9.
    D. Lambert. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34:1-14 (1992).Google Scholar
  10. 10.
    D. C. Heilbron. Zero-altered and other regression models for count data with added zeros. Biomedical Journal 36:531-547 (1994).Google Scholar
  11. 11.
    M. Ridout, J. Hinde, and C. G. B. Demetrio. A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives. Biometrics 57:219-223 (2001).Google Scholar
  12. 12.
    M. K. Olsen and J. L. Schafer. A two-part random-effects model for semicontinuous longitudinal data. JASA 96:730-745 (2001).Google Scholar
  13. 13.
    S. L. Beal and L. B. Sheiner (eds.). NONMEM Users Guides, University of California, San Francisco, CA, 1992.Google Scholar
  14. 14.
    K. G. Kowalski and M. M. Hutmacher. Efficient screening of covariates in population models using Wald's approximation to the likelihood ratio test. J. Pharmacokin. Pharmacodynam. 28:253-275 (2001).Google Scholar
  15. 15.
    G. Schwarz. Estimating the dimension of a model. Ann. Statist. 6:461-464 (1978).Google Scholar
  16. 16.
    R. J. A. Little. Modeling the drop-out mechanism in repeated-measures studies. JASA 90:1112-1121 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Kenneth G. Kowalski
    • 1
    Email author
  • Lynn McFadyen
    • 2
  • Matthew M. Hutmacher
    • 3
  • Bill Frame
    • 1
  • Raymond Miller
    • 1
  1. 1.Pfizer Global Research and DevelopmentAnn Arbor
  2. 2.Clinical Sciences (IPC 746)Pfizer LimitedSandwich, KentUK
  3. 3.Pfizer Global Research and DevelopmentSkokie

Personalised recommendations