Journal of Polymers and the Environment

, Volume 12, Issue 3, pp 105–112 | Cite as

Bacterial Poly(Hydroxyalkanoate) Polymer Production from the Biodiesel Co-product Stream

  • Richard D. Ashby
  • Daniel K. Y. Solaiman
  • Thomas A. Foglia
Article

Abstract

A co-product stream from soy-based biodiesel production (CSBP) containing glycerol, fatty acid soaps, and residual fatty acid methyl esters (FAME) was utilized as a fermentation feedstock for the bacterial synthesis of poly(3-hydroxybutyrate) (PHB) and medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) polymers. Pseudomonas oleovorans NRRL B-14682 and P. corrugata 388 grew and synthesized PHB and mcl-PHA, respectively, when cultivated in up to 5% (w/v) CSBP. In shake flask culture, P. oleovorans grew to 1.3 ± 0.1 g/L (PHA cellular productivity = 13-27% of the bacterial cell dry weight; CDW) regardless of the initial CSBP concentration, whereas P. corrugata reached maximum cell yields of 2.1 g/L at 1% CSBP, which tapered off to 1.7 g/L as the CSBP media concentration was increased to 5% (maximum PHA cellular productivity = 42% of the CDW at 3% CSBP). While P. oleovorans synthesized PHB from CSBP, P. corrugata produced mcl-PHA consisting primarily of 3-hydroxyoctanoic acid (C8:0; 39 ± 2 mol%), 3-hydroxydecanoic acid (C10:0; 26 ± 2 mol%) and 3-hydroxytetradecadienoic acid (C14:2; 15 ± 1 mol%). The molar mass (Mn) of the PHB polymer decreased by 53% as the initial CSBP culture concentration was increased from 1% to 5% (w/v). In contrast, the Mn of the mcl-PHA polymer produced by P. corrugata remained constant over the range of CSBP concentrations used.

Poly(hydroxyalkanoates) Poly(3-hydroxybutyrate) Pseudomonas oleovorans Pseudomonas corrugata biodiesel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E.K.Wilson (2002) Chem.Engineer.News 80 (21)46-49.Google Scholar
  2. 2.
    P.P.King (1982) J.Chem.Technol.Biotechnol. 32,2-8.Google Scholar
  3. 3.
    D.Byrom (1987){tiTrends Biotechnol.}5,246-250.Google Scholar
  4. 4.
    P.A.Holmes (1985){tiPhys.Technol.}16,32-36.Google Scholar
  5. 5.
    M.J.DeSmet, G.Eggink, B.Witholt, J.Kingma,and H.Wynberg (1983){tiJ.Bacteriol.}154,870-878.Google Scholar
  6. 6.
    R.G.Lageveen, G.W.Huisman, H.Preusting, P.Ketelaar, G.Eggink,and B.Witholt (1988){tiAppl.Environ.Microbiol.} 54,2924-2932.Google Scholar
  7. 7.
    G.W.Huisman, O.DeLeeuw, G.Eggink,and B.Witholt (1989){tiAppl.Environ.Microbiol.}55,1949-1954.Google Scholar
  8. 8.
    H.Brandl, R.A.Gross, R.W.Lenz,and R.C.Fuller (1988) {tiAppl.Environ.Microbiol.}54,1977-1982.Google Scholar
  9. 9.
    R.A.Gross, C.DeMello, R.W.Lenz, H.Brandl,and R.C.Fuller (1989){tiMacromolecules} 22,1106-1115.Google Scholar
  10. 10.
    G.W.Haywood, A.J.Anderson,and E.A.Dawes (1989) {tiBiotechnol.Lett.}11,471-476.Google Scholar
  11. 11.
    A-M.Cromwick, T.Foglia,and R.W.Lenz (1996 ){tiAppl. Microbiol.Biotechnol.}46,464-469.Google Scholar
  12. 12.
    R.D.Ashby and T.A.Foglia (1998){tiAppl.Microbiol.Biotechnol.} 49,431-437.Google Scholar
  13. 13.
    D.K.Y.Solaiman, R.D.Ashby,and T.A.Foglia (1999) {tiCurr.Microbiol.}38,151-154.Google Scholar
  14. 14.
    D.K.Y.Solaiman, R.D.Ashby,and T.A.Foglia (2002) {tiCurr.Microbiol.}44,189-195.Google Scholar
  15. 15.
    Y.Doi, S.Kitamura,and H.Abe (1995){tiMacromolecules} 28,4822-4828.Google Scholar
  16. 16.
    J.Asrar, H.E.Valentin, P.A.Berger, M,Tran, S.R.Padgette,and J.R.Garbow (2002)Biomacromolecules 3, 1006-1012.Google Scholar
  17. 17.
    R.D.Ashby, D.K.Y.Solaiman,and T.A.Foglia (2002) {tiJ.Ind.Microbiol.Biotechnol.}28,147-153.Google Scholar
  18. 18.
    M.Akiyama, Y.Taima,and Y.Doi (1992){tiAppl.Microbiol.Biotechnol.}37,698-701.Google Scholar
  19. 19.
    H-J.Lee, M.H.Choi, T-U.Kim,and S.C.Yoon (2001){tiAppl. Environ.Microbiol.}67,4963-4974.Google Scholar
  20. 20.
    E.Casini, T.C. de Rijk, P. de Waard,and G.Eggink (1997) {tiJ.Environ.Polym.Degrad.}5,153-158.Google Scholar
  21. 21.
    I.K.P.Tan, K.S.Kumar, M.Theanmalar, S.N.Gan,and B.Gordon III (1997)Appl.Microbiol.Biotechnol.47, 207-211.Google Scholar
  22. 22.
    R.D.Ashby, D.K.Y.Solaiman, T.A.Foglia,and C-K.Liu (2001)Biomacromolecules 2,211-216.Google Scholar
  23. 23.
    R.D.Ashby, D.K.Y.Solaiman,and T.A.Foglia (2002) Appl.Microbiol.Biotechnol.60,154-159.Google Scholar
  24. 24.
    G.N.M.Huijberts, G.Eggink, P. de Waard, G.W.Huisman,and B.Witholt (1992)Appl.Environ.Microbiol.58, 536-544.Google Scholar
  25. 25.
    T.A.Foglia and K.C.Jones (1997)J.Liquid Chrom.Related Techniq. 20,1829-1838.Google Scholar
  26. 26.
    E.Y.Lee and C.Y.Choi (1995)J.Ferm.Biotechnol.80, 408-414.Google Scholar
  27. 27.
    G.Braunegg, K.Genser, R.Bona,and G.Haage (1999) Macromol.Symp.144,375-383.Google Scholar
  28. 28.
    F-Y.Shi, R.D.Ashby,and R.A.Gross (1996)Macromolecules 29,7753-7758.Google Scholar
  29. 29.
    R.D.Ashby, F-Y.Shi,and R.A.Gross (1997)Tetrahedron 53,15209-15223.Google Scholar
  30. 30.
    R.D.Ashby, F-Y.Shi,and R.A.Gross (1999)Biotechnol. Bioengin.62,106-113.Google Scholar
  31. 31.
    K.D. Snell, S.A. Hogan, S.J. Sim, A.J. Sinskey,and C. Rha (1998)U.S.Patent #5,811,272.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Richard D. Ashby
    • 1
  • Daniel K. Y. Solaiman
    • 1
  • Thomas A. Foglia
    • 1
  1. 1.Fats, Oils and Animal Coproducts Research Unit ERRC,United States Department of AgricultureAgricultural Research ServiceWyndmoor

Personalised recommendations