Journal of Scientific Computing

, Volume 21, Issue 2, pp 225–250 | Cite as

A Comparative Study of Time Advancement Methods for Solving Navier–Stokes Equations

  • T. K. Sengupta
  • A. Dipankar


A qualitative and quantitative study is made for choosing time advancement strategies for solving time dependent equations accurately. A single step, low order Euler time integration method is compared with Adams–Bashforth, a second order accurate time integration strategy for the solution of one dimensional wave equation. With the help of the exact solution, it is shown that the presence of the computational mode in Adams–Bashforth scheme leads to erroneous results, if the solution contains high frequency components. This is tested for the solution of incompressible Navier–Stokes equation for uniform flow past a rapidly rotating circular cylinder. This flow suffers intermittent temporal instabilities implying presence of high frequencies. Such instabilities have been noted earlier in experiments and high accuracy computations for similar flow parameters. This test problem shows that second order Adams– Bashforth time integration is not suitable for DNS.

DNS time integration methods dispersion relation preservation Navier–Stokes equation flow instabilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kawamura, T., Takami, H., and Kuwahara, K. (1985). A new higher order upwind scheme for incompressible Navier–Stokes equation. Fluid Dynam. Res. 1, 145.Google Scholar
  2. 2.
    Sengupta, T. K., and Sengupta, R. (1994). Flow past an impulsively started circular cylinder at high Reynolds number. Comput. Mech. 14(4), 298.Google Scholar
  3. 3.
    Nair, M. T., and Sengupta, T. K. (1997). Unsteady flow past elliptic cylinders. J. Fluids Struct. 11, 555.Google Scholar
  4. 4.
    Harlow, H. H., and Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182.Google Scholar
  5. 5.
    Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16.Google Scholar
  6. 6.
    Adams, N. A., and Shariff, K. (1996). A high resolution hybrid compact-ENO scheme for shock turbulence interaction problems. J. Comput. Phys. 127(1), 27.Google Scholar
  7. 7.
    Sengupta, T. K., Anuradha, G., and De, S. (2003). Navier–Stokes solution by new compact schemes for incompressible flows. Paper to be presented at second MIT conference on Computational Fluid and Solid Mechanics, Bathe, K. J. (ed.).Google Scholar
  8. 8.
    Sengupta, T. K., and Nair, M. T. (1999). Upwind schemes and large eddy simulation. Internat. J. Numer. Methods Fluids 31, 879.Google Scholar
  9. 9.
    Ames, W. F. (1977). Numerical Methods for Partial Differential Equations, 2nd ed., Academic Press, New York.Google Scholar
  10. 10.
    Haltiner, G. J., and Williams, R. T. (1980). Numerical Prediction and Dynamic Meteorology, Wiley, New York.Google Scholar
  11. 11.
    Lilly, D. K. (1965). On the computational stability of numerical solutions of time-dependent non-linear Geophysical fluid dynamics problems. Mon. Weather Rev. 138, 11.Google Scholar
  12. 12.
    Oran, E. S., and Boris, J. P. (2001). Numerical Simulation of Reactive Flows, 2nd ed., Cambridge University Press.Google Scholar
  13. 13.
    Durran, D. R. (1999). Numerical Methods for Wave Equation in Geophysical Fluid Dynamics, Springer-Verlag, New York.Google Scholar
  14. 14.
    Kim, J., and Moin, P. (1985). Application of fractional step method to incompressible Navier–Stokes equation. J. Comput. Phys. 58, 308.Google Scholar
  15. 15.
    Kawamura, H., Ohsaka, K., Abe, H., and Yamamoto, K. (1998). DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number. Internat. J. Heat Fluid Flow 19, 482.Google Scholar
  16. 16.
    Kawamura, H., Abe, H., and Matsuo, Y. (1999). DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effect. Internat. J. Heat Fluid Flow 20, 196.Google Scholar
  17. 17.
    Maass, C., and Schumann, U. (1994). Numerical simulation of turbulent flow over a wavy boundary. In Voke, P. R., Kleiser, L., and Chollet, J.-P. (eds.), Direct and Large Eddy Simulation, p. 287.Google Scholar
  18. 18.
    Clerex, H. J. H. (1997). A spectral solver for the Navier–Stokes equation in the velocity-vorticity formulation for flows with two non-periodic direction. J. Comput. Phys. 137, 186.Google Scholar
  19. 19.
    Boersma, B. J., Brethonwer, G., and Nieuwstadt, F. T. M. (1998). A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 10, 899.Google Scholar
  20. 20.
    Serre, E., Bontonx, P., and Kotorba, R. (2001). Numerical simulation of transition in three-dimensional rotating flows with walls: Boundary layer instability. Int. J. Fluid Dynam. 5(2), 17.Google Scholar
  21. 21.
    Karamanos, G. S., and Karniadakis, G. E. (2000). A spectral vanishing viscosity method for large eddy simulations. J. Comput. Phys. 163, 22.Google Scholar
  22. 22.
    Sipp, D., Jacquin, L., and Cosssu, C. (2000). Self-adaption and viscous and selection in concentrated two-dimensional vortex dipoles. Phys. Fluids 12(2), 245.Google Scholar
  23. 23.
    Perot, J. B. (1992). DNS of turbulence in connection machine. In Pelz, R., Ecer, A., and Hauser, J. (eds.), Proceedings of Parallel CFD-1992, Elsevier, The Netherlands.Google Scholar
  24. 24.
    Lam, K., and Banerjee, S. (1992). On the condition of streak formulation in bounded flow. Phys. Fluids 4, 306.Google Scholar
  25. 25.
    Shi, J., Thomas, T. G., and Williams, J. J. R. (2000). Free surface effects in open channel flow at moderate Froude and Reynolds number. J. Hydraul. Res. 38(6), 465.Google Scholar
  26. 26.
    Sengupta, T. K., Ganerwal, G., and De, S. (2003). Analysis of central and upwind compact schemes. J. Comput. Phys., accepted for publication.Google Scholar
  27. 27.
    Werle, H. (1984). Hydrodynamic visualization of the flow around a streamlined cylinder with suction. Cousteau–Malavard sail model, Le Rechereche Aerospatiale 4, 29.Google Scholar
  28. 28.
    Sengupta, T. K., Kasliwal, A., De, S., and Nair, M. T. (2003). Temporal flow instability for Magnus–Robins effect at high rotation rates. J. Fluids Struct. 17(7), 941.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • T. K. Sengupta
  • A. Dipankar
    • 1
  1. 1.Department of Aerospace EngineeringI.I.TKanpurIndia

Personalised recommendations