Journal of Mammalian Evolution

, Volume 11, Issue 3–4, pp 257–277 | Cite as

Are Megabats Big?

  • James M. Hutcheon
  • Theodore GarlandJr.


Traditionally, bats (Order Chiroptera) are divided into two suborders, Megachiroptera (“megabats”) and Microchiroptera, and this nomenclature suggests a consistent difference in body size. To test whether megabats are, in fact, significantly larger than other bats, we compared them with respect to average body mass (log transformed), using both conventional and phylogenetic statistics. Because bat phylogeny is controversial, including the position of megabats, we employed several analyses. First, we derived two generic-level topologies for 101 genera, one with megabats as the sister of all other bats (“morphological” tree), the other with megabats as the sister of one specific group of microbats, the Rhinolophoidea (“molecular” tree). Second, we used a recently published “supertree” that allowed us to analyze body mass data for 656 species. In addition, because the way body mass has evolved is generally unknown, we employed several sets of arbitrary branch lengths on both topologies, as well as transformations of the branches intended to mimic particular models of character evolution. Irrespective of the topology or branch lengths used, log body mass showed highly significant phylogenetic signal for both generic and species-level analyses (all P≤ 0.001). Conventional statistics indicated that megabats were indeed larger than other bats (P ≪ 0.001). Phylogenetic analyses supported this difference only when performed with certain branch lengths, thus demonstrating that careful consideration of the branch lengths used in a comparative analysis can enhance statistical power. A conventional Levene's test indicated that log body mass was more variable in megabats as compared with other bats (P=0.075 for generic-level data set, P ≪ 0.001 for species-level). A phylogenetic equivalent, which gauges the amount of morphospace occupied (or average minimum rate of evolution) relative to topology and branch lengths specified, indicated no significant difference for the generic analyses, but did indicate a difference for some of the species-level analyses. The ancestral bat is estimated to have been approximately 20–23 g in body mass (95% confidence interval approximately 9–51 g).

Body size comparative method Chiroptera disparity echolocation independent contrast Megachiroptera Microchiroptera phylogenetic signal supertree systematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerly, D. D. (2000). Taxon sampling, correlated evolution, and independent contrasts. Evolution 54: 1480-1492.Google Scholar
  2. Altringham, J. (1996). Bats: Biology and behavior. Oxford Univeristy Press, Oxford, UK.Google Scholar
  3. Barclay, M. R., and Brigham, R. (1991). Prey detection, dietary niche breadth, and body size in bats: Why are aerial insectivorous bats so small? Am. Nat. 137: 693-703.Google Scholar
  4. Bininda-Edmonds, O. R. P., Gittleman, J. L., and Steel, M. A. (2002). The (super)tree of life: Procedures, problems, and prospects. Ann. Rev. Ecol. Syst. 33: 265-289Google Scholar
  5. Blomberg, S. P., and Garland, T., Jr. (2002). Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15: 899-910.Google Scholar
  6. Blomberg, S. P., Garland, T., Jr., and Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57: 717-745.Google Scholar
  7. Clobert, J., Garland, T., Jr., and Barbault, R. (1998). The evolution of demographic tactics in lizards: A test of some hypotheses concerning life history evolution. J. Evol. Biol. 11: 329-364.Google Scholar
  8. D´ýaz-Uriarte, R., and Garland, T., Jr. (1996). Testing hypotheses of correlated evolution using phylogenetically independent contrasts: Sensitivity to deviations from Brownian motion. Syst. Biol. 45: 27-47.Google Scholar
  9. D´ýaz-Uriarte, R., and Garland, T., Jr. (1998). Effects of branch length errors on the performance of phylogenetically independent contrasts. Syst. Biol. 47: 654-672.Google Scholar
  10. Dobson, G. E. (1875). Conspectus of the suborders, families and genera of Chiroptera arranged according to their natural affinities. Ann. Mag. Nat. Hist. 16: 345-357.Google Scholar
  11. Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125: 1-15.Google Scholar
  12. Fenton, M. B., Audet, D., Obrist, M. K., and Rydell, J. (1995). Signal strength, timing, and self-deafening: The evolution of echolocation in bats. Paleobiology 21: 229-242.Google Scholar
  13. Freckleton, R. P., Harvey, P. H., and Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160: 712-726.Google Scholar
  14. Freeman, P. W. (1981). A multivariate study of the family Molossidae (Mammalia: Chiroptera): Morphology, ecology, and evolution. Fieldiana Zool. ns, no. 7.Google Scholar
  15. Freeman, P. W. (2000). Macroevolution in Microchiroptera: Recoupling morphology and ecology with phylogeny. Evol. Ecol. Res. 2: 317-335.Google Scholar
  16. Garland, T., Jr., Dickerman, A. W., Janis, C. M., and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42: 265-292.Google Scholar
  17. Garland, T., Jr., Harvey, P. H., and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41: 18-32.Google Scholar
  18. Garland, T., Jr., and Ives, A. R. (2000). Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155: 346-364.Google Scholar
  19. Garland, T., Jr., Martin, K. L. M., and D´ýaz-Uriarte, R. (1997). Reconstructing ancestral trait values using squared-change parsimony: Plasma osmolarity at the origin of amniotes. In: Amniote Origins: Completing the Transition to Land, S. S. Sumida and K. L. M. Martin, eds., pp 425-501, Academic Press, San Diego.Google Scholar
  20. Garland, T., Jr., Midford, P. E., and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for conidence intervals on ancestral values. Am. Zool. 39: 374-388.Google Scholar
  21. Gatesy, J., and Springer, M. S. (in press). A critique of matrix representation with parsimony supertrees. In: Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, O. R. P. Bininda-Edmonds, ed., Computational Biology Series, Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  22. Gatesy, J., Matthee, C., DeSalle, R., and Hayashi, C. Y. (2002). Resolution of a supertree/supermatrix paradox. Syst. Biol. 51: 652-664.Google Scholar
  23. Grafen, A. (1989). The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326: 119-156.Google Scholar
  24. Griffiths, T. A. (1994). Phylogenetic systematics of the slit-faced bats (Chiroptera: Nycteridae) based on hyoid and other morphology. Am. Mus. Nov. 3090: 1-17.Google Scholar
  25. Griffiths, T. A., Truckenbrod, A., and Spnholtz, P. J. (1992). Systematics of Megadermatid bats (Chiroptera: Megadermatidae) based on hyoid morphology. Am. Mus. Nov. 3041: 1-21.Google Scholar
  26. Habersetzer, J., and Storch, G. (1989). Ecology and echolocation of Eocene Messel bats. In: European Bat Research, V. Hanak, I. Horacek, and J. Gaisler, eds., pp 213-233, Charles University Press, Prague.Google Scholar
  27. Hand, S. J., and Kirsch, J. A. W. (1998). A southern origin for the Hipposideridae (Microchiroptera)? In: Bat Phylogeny, Morphology, Echolocation, T. H. Kunz and P. A. Racey, eds., Smithsonian Institution Press, Washington D.C.Google Scholar
  28. Harmon, L. J., Schulte, J. A., II, Larson, A., and Losos, J. B. (2003). Tempo and mode of evolutionary radiation in iguanian lizards. Science 301: 961-964.Google Scholar
  29. Harvey, P. H., and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.Google Scholar
  30. Harvey, P. H., and Rambaut, A. (1998). Phylogenetic extinction rates and comparative methodology. Proc. R. Soc. Lond. B 265: 1691-1696.Google Scholar
  31. Harvey, P. H., and Rambaut, A. (2000). Comparative analyses for adaptive radiations. Phil. Trans. R. Soc. Lond. B 355: 1599-1605.Google Scholar
  32. Hill, J. D., and J. E. Smith. (1980). Bats a natural history. Univerisity of Texas Press, Austin.Google Scholar
  33. Hutcheon, J. M., and Kirsch, J. A. W. (2004). Camping in a different tree: Results of molecular systematic studies of bats using DNA-DNA hybridization. J. Mamm. Evol. 11: 17-37.Google Scholar
  34. Hutcheon, J. M., Kirsch, J. A. W., and Pettigrew, J. D. (1998). Base compositional biases and the bat problem. III. The question of microchiropteran monophyly. Phil. Trans. R. Soc. Lond. B 353: 607-617.Google Scholar
  35. James, F. C. (1982). The ecological morphology of birds. Ann. Zool. Fennici 19: 265-275.Google Scholar
  36. Jones, G. (1994). Scaling of windbeat and echlocation pulse emission rates in bats: why are aerial insectivorous bats so small? Funct. Ecol. 8: 450-457.Google Scholar
  37. Jones, K. E., Purvis, A., MacLarnon, A., Bininda-Emonds, O. R. P., and Simmons, N. B. (2002). A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol. Rev. 77: 223-259.Google Scholar
  38. Kalko, E. K. V., and Condon, M. A. (1999). Echolocation, olfaction and fruit display: how bats find fruit of flagellichorous cucurbits. Funct. Ecol. 12: 364-372.Google Scholar
  39. Kirsch, J. A. W., Flannery, T. F., Springer, M. S., and Lapointe, F.-J. (1995). Phylogeny of the Pteropodidae (Mammalia: Chiroptera) based on DNA hybridization, with evidence for bat monophyly. Aust.J.Zool. 43: 395-428.Google Scholar
  40. Kirsch, J. A. W., Hutcheon, J. M., Byrnes, D. G. P., and Lloyd, B. D. (1998). Affinities and historical zoogeography of the New Zealand short-tailed bat, Mystacina tuberculata Gray 1843, inferred from DNA-hybridization comparisons. J. Mamm. Evol. 5: 33-64.Google Scholar
  41. Lapointe, F.-J., Kirsch, J. A. W., and Hutcheon, J. M. (1999). Total evidence, consensus, and bat phylogeny: A distance-based approach. Mol. Phylogenet. Evol. 11: 55-66.Google Scholar
  42. Lavasseur, C., Landry, P.-A., Makarenkov, V., Kirsch, J. A. W., and Lapointe, F.-J. (2003). Incomplete distance matrices, supertrees, and bat phylogeny. Mol. Phylogenet. Evol. 27: 239-246.Google Scholar
  43. Mack, A. L. (1993). The sizes of vertbrate-dispersed fruits: A neotropical-paleotropical comparison. Am. Nat. 142: 840-856.Google Scholar
  44. Marshall, A. G. (1983). Bats, flowers and fruit: Evolutionary relationships in the Old World. Biol. J. Linn. Soc. 20: 115-135.Google Scholar
  45. McClain, C. R., Johnson, N. A., and Rex, M. A. (2004). Morphological disparity as a biodiversity metric in lower bathyal and abyssal gastropod assemblages. Evolution 58: 338-348.Google Scholar
  46. McNab, B. K. (2003). Standard energetics of phyllostomid bats: The inadequacies of phylogenetic-contrast analyses. Comp.Biochem.Physiol. A135: 357-368.Google Scholar
  47. Norberg, U. M. (1990). Zoophysiology, Vol. 27, Springer-Verlag, Berlin.Google Scholar
  48. Norberg, U. M. (1994). Wing design, flight performance, and habitat use in bats. In: Ecological Morphology: Integrative Organismal Biology, P. C. Wainwright and S. M. Reilly, eds., pp. 205-239, University of Chicago Press, Chicago.Google Scholar
  49. Norberg, U. M., and Rayner, J. M. V. (1987). Ecological morphology and flight in bats (Mammalia: Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Phil. Trans. Roy. Soc. Lond. B 316: 335-427.Google Scholar
  50. Pagel, M. D. (1992). A method for the analysis of comparative data. J. Theor. Biol. 156: 431-442.Google Scholar
  51. Pettigrew, J. D. (1991a). Wings or brain? Convergent evolution in the origins of bats. Syst. Zool. 40: 199-216Google Scholar
  52. Pettigrew, J. D. (1991b). A fruitful wrong hypothesis? Response to Baker, Novacek, and Simmons. Syst. Zool. 40: 231-239.Google Scholar
  53. Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. I., and Cooper, H. M. (1989). Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Phil. Trans. R. Soc. Lond. B 325: 489-559.Google Scholar
  54. Pumo, D. E., Finamore, P. S., Franek, W. R., Phillips, C. J., Tarzami, S., and Balzarano, D. (1998). Complete Mitochondrial Genome of a Neotropical Fruit Bat, Artibeus jamaicensis, and a New Hypothesis of the Relationships of Bats to Other Eutherian Mammals. J. Mol. Evol. 47: 709-717.Google Scholar
  55. Purvis, A. (1995). A composite estimate of primate phylogeny. Phil. Trans. R. Soc. Lond. B 348: 405-421.Google Scholar
  56. Purvis, A., and Garland, T., Jr. (1993). Polytomies in comparative analyses of continuous characters. Syst. Biol. 42: 569-575.Google Scholar
  57. Robbins, L. W., and Sarich, V. M. (1986). Evolutionary relationships in the family Emballonuridae (Chiroptera). J. Mamm. 69: 1-13.Google Scholar
  58. Schluter, D., Price, T., Mooers, A. O., and Ludwig, D. (1997). Likelihood of ancestor states in adaptive radiation. Evolution 51: 1699-1711.Google Scholar
  59. Silva, M., and Downing, J. (1995). The CRC Handbook of Mammalian Body Masses, CRC Press, Boca Raton, FL.Google Scholar
  60. Simmons, N. B. (1994). The case for chiropteran monophyly. Am. Mus. Nov. 3103: 1-54.Google Scholar
  61. Simmons, N. B., and Geisler, J. B. (1998). Phylogenetic relationships of Icaronycteris, Archaeonycteris, Has-sianycteris, andPalaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Am. Mus. Nat. Hist. 235: 1-182.Google Scholar
  62. Smith, J. D. (1976). Chiropteran evolution. In: Biology of Bats of the New World Family Phyllostomidae. Part I, R. J. Baker, J. K. Jones Jr., and D. C. Carter, eds., pp. 49-69, Special Publication of the Museum, Texas Tech, Lubbock.Google Scholar
  63. Smith, F. A., Lyons, S. K., Morgan Ernest, S. K., Jones, K. E., Kaufman, D. M., Dayan, T., Marquet, P. A., Brown, J. H., and Haskell, J. P. (2003). Body mass of Late Quaternary mammals. Ecology 84: 3403. (Ecological Archives E084-E094)Google Scholar
  64. Speakman, J. R. (2001). The evolution of flight and echolocation in bats: Another leap in the dark. Mamm. Rev. 31: 111-130.Google Scholar
  65. Springer, M. S., Hollar, L. J., and Kirsch, J. A. W. (1995). Phylogeny, molecules versus morphology, and rates of character evolution among fruitbats (Chiroptera: Megachiroptera). Aust. J. Zool. 43: 557-582.Google Scholar
  66. Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J., and de Jong, W. W. (2001). Integrated fossil and molecular data reconstruct bat echolocation. Proc. Natl. Acad. Sci. U.S.A. 98: 6241-6246.Google Scholar
  67. Teeling, E. C., Madsen, O., Murphy, W. J., Springer, M. S., and O'Brien, S. J. (2003). Nuclear gene sequences confirm an ancient link between New Zealand's short-tailed bat and South American noctilionoid bats. Mol. Phylogenet. Evol. 28: 308-319.Google Scholar
  68. Teeling, E. C., Madsen, O., Van Den Bussche, R. A., de Jong, W. W., Stanhope, M. J., and Springer, M. S. (2002). Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc. Nat. Acad. Sci. U.S.A. 99: 1431-1436.Google Scholar
  69. Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J. (2000). Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188-192.Google Scholar
  70. Thies, W., Kalko, E. K. V., and Schnitzler, H.-U. (1998). The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea feeding on Piper. Behav. Ecol. Sociobiol. 42: 397-409.Google Scholar
  71. Van Cakenberghe, V., Herrel, A., and Aguirre, L. F. (2002). Evolutionary relationships between cranial shape and diet in bats (Mammalia: Chiroptera). In: Topics in Functional and Ecological Vertebrate Morphology, P. Aerts, K. D'Août, A. Herrel, and R. Van Damme, eds., pp. 205-236, Shaker Publishing, Maastricht, The Netherlands.Google Scholar
  72. Van Den Bussche, R. A., and Hoofer, S. R. (2004). Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate outgroup taxa. J. Mamm. 85: 321-220.Google Scholar
  73. von Helverson, D., and von Helverson, O. (1999). Acoustic guide in bat pollinated flower. Nature 398: 759-760.Google Scholar
  74. Vanhooydonck, B., and Van Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1: 785-805.Google Scholar
  75. Weins, J. J. (2003) Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol. 52: 528-538.Google Scholar
  76. Wetterer, A. L., Rockman, M. V., and Simmons, N. B. (2000). Phylogeny of phyllostomid bats (Mammalia: Chiroptera): Data from diverse morphological systems, sex chromosomes, and restriction sites. Bull. Am. Mus. Nat. Hist. 248: 1-200.Google Scholar
  77. Wilson, D. E., and Reeder, D. M. (eds.). (1993). Mammal Species of the World, Smithsonian Institute Press, Washington, DC.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • James M. Hutcheon
    • 1
  • Theodore GarlandJr.
    • 2
  1. 1.Department of BiologyGeorgia Southern UniversityStatesboroUSA
  2. 2.Department of BiologyUniversity of CaliforniaRiversideUSA

Personalised recommendations