Journal of Mammalian Evolution

, Volume 11, Issue 1, pp 1–16 | Cite as

Relationships Among the Families and Orders of Marsupials and the Major Mammalian Lineages Based on Recombination Activating Gene-1

  • Michelle L. Baker
  • John P. Wares
  • Gavan A. Harrison
  • Robert D. Miller


Controversies remain over the relationships among several of the marsupial families and between the three major extant lineages of mammals: Eutheria (placentals), Metatheria (marsupials), and Prototheria (monotremes). Two opposing hypotheses place the marsupials as either sister to the placental mammals (Theria hypothesis) or sister to the monotremes (Palimpsest or Marsupionta hypothesis). A nuclear gene that has proved useful for analyzing phylogenies of vertebrates is the recombination activation gene-1 (RAG1). RAG1 is a highly conserved gene in vertebrates and likely entered the genome by horizontal transfer early in the evolution of jawed vertebrates. Phylogenetic analyses were performed on RAG1 sequences from seven placentals, 28 marsupials, and all three living monotreme species. Phylogenetic analyses of RAG1 sequences support many of the traditional relationships among the marsupials and suggest a relationship between bandicoots (order Peramelina) and the marsupial mole (order Notoryctemorphia), two lineages whose position in the phylogenetic tree has been enigmatic. A sister relationship between South American shrew opossums (order Paucituberculata) and all other living marsupial orders is also suggested by RAG1. The relationship between the three major groups of mammals is consistent with the Theria hypothesis, with the monotremes as the sister group to a clade containing marsupials and placentals.

evolution Mammalia Marsupionta RAG1 Theria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. M., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Evol. 215: 403-410.Google Scholar
  2. Amrine-Madsen, H., Scally, M., Westerman, M., Stanhope, M. J., Krajewski, C., and Springer, M. S. (2003). Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials. Mol. Phylogenet. Evol. 28: 186-196.Google Scholar
  3. Archer, M., Flannery, T. F., Richie, A., and Molnare, R. E. (1985). First Mesozoic mammal from Australia—An Early Cretaceous monotreme. Nature 318: 363-366.Google Scholar
  4. Baverstock, P., Krieg, M., and Birrell, J. (1990). Evolutionary relationships of Australian marsupials as assessed by albumin immunology. In: Mammals From Pouches and Eggs: Genetics, Breeding and Evolution of Marsupials and Monotremes, J. A. Marshall Graves, R. M. Hope, and D. W. Cooper, eds., pp. 131-145, CSIRO, Melbourne.Google Scholar
  5. Cao, Y., Janke, A., Waddell, P. J., Westerman, M., Takenaka, O., Murata, S., Okada, N., Paabo, S., and Hasegawa, M. (1998). Conflict among individual mitochondrial proteins in resolving the phylogeny of eutherian orders. J. Mol. Evol. 47: 307-322.Google Scholar
  6. Colgan, D. J. (1999). Phylogenetic studies of marsupials based on phosphoglycerate kinase DNA sequences. Mol. Phylogenet. Evol. 11: 13-26.Google Scholar
  7. Cunningham, C. W., Zhu, H., and Hillis, D. M. (1998). Best-fit maximum-likelihood models for phylogenetic inference: Empirical tests with known phylogenies. Evolution 52: 978-987.Google Scholar
  8. Edwards, D., and Westerman, M. (1995). The molecular relationships of possum and glider families as revealed by DNA–DNA hybridisions. Aust. J. Zool. 43: 231-240.Google Scholar
  9. Flannery, T. F., Archer, M., Rich, T. H., and Jones, R. (1995). A new family of monotremes from the Cretaceous of Australia. Nature 377: 418-420.Google Scholar
  10. Gregory, W. K. (1947). The monotremes and the palimpsest theory. Bull. Am. Mus. Nat. Hist. 88: 1-52.Google Scholar
  11. Groth, J. G., and Barrowclough, G. F. (1999). Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol. Phylogenet. Evol. 12: 115-123.Google Scholar
  12. Hansen, J. D., and McBlane, J. F. (2000). Recombination-activating genes, transposition, and the lymphoid-specific combinatorial immune system: A common evolutionary connection. In: Origin and Evolution of the Vertebrate Immune System, L. Du Pasquier and G. W. Litman, eds., pp. 111-135, Springer, New York.Google Scholar
  13. Hughes, A. L. (1998). Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems. Immunogenetics 47: 283-296.Google Scholar
  14. Hughes, R. L., Carrick, F. N., and Shorey, C. D. (1975). Proceedings: Reproduction in the platypus, Ornithorhynchus anatinus, with particular reference to the evolution of viviparity. Reprod. Fertil. Dev. 43: 374-375.Google Scholar
  15. Huxley, T. H. (1880). On the application of laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia. Proc. Zool. Soc. Lond. 43: 649-662.Google Scholar
  16. Janke, A., Erpenbeck, D., Nilsson, M., and Arnason, U. (2001). The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caimen crocodylus): Implications for amniote phylogeny. Proc. Natl. Acad. Sci. U.S.A. 268: 623-631.Google Scholar
  17. Janke, A., Magnell, O., Wieczorek, G., Westerman, M., and Arnason, U. (2002). Phylogenetic analysis of 18s rRNA and the mitochondrial genomes of the wombat, Vombatus urinus, and the spiny anteater, Tachyglossus aculeatus: Increased support for the Marsupionta hypothesis. J. Mol. Evol. 54: 71-80.Google Scholar
  18. Janke, A., Xu, X., and Arnason, U. (1997). The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia and Eutheria. Proc. Natl. Acad. Sci. U.S.A. 94: 1276-1281.Google Scholar
  19. Killian, J. K., Buckley, T. R., Stewart, N., Munday, B. L., and Jirtle, R. L. (2001). Marsupials and eutherians reunited: Genetic evidence for the Theria hypothesis of mammalian evolution. Mamm. Genome 12: 513-517.Google Scholar
  20. Kirsch, J. A., Dickerman, A. W., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australasian affinity of the American marsupial Dromiciops australis. Proc. Natl. Acad. Sci. U.S.A. 88: 10465-10469.Google Scholar
  21. Kirsch, J. A., and Mayer, G. C. (1998). The platypus is not a rodent: DNA hybridization, amniote phylogeny and the palimpsest theory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353: 1221-1237.Google Scholar
  22. Kirsch, J. A. W. (1977). The comparative serology of Marsupialia and a classification of marsupials. Aust. J. Zool. Supp. Ser. 52: 1-152.Google Scholar
  23. Kirsch, J. A. W., Lapointe, F., and Springer, M. S. (1997). DNA-hybridisation studies of marsupials and their implications for metatherian classification. Aust. J. Zool. 45: 211-280.Google Scholar
  24. Kishino, H., and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data and the branching order in Hominoidae. J. Mol. Evol. 29: 170-179.Google Scholar
  25. Krajewski, C., Buckley, L., and Westerman, M. (1997). DNA phylogeny of the marsupial wolf resolved. Proc. Roy. Soc. Lond. B 264: 911-917.Google Scholar
  26. Kullander, K., Carlson, B., and Hallböök, F. (1997). Molecular phylogeny and evolution of the neurotrophins from monotremes and marsupials. J. Mol. Evol. 45: 311-321.Google Scholar
  27. Lee, M.-H., Shroff, R., Cooper, S. J. B., and Hope, R. (1999). Evolution and molecular characterization of β-globin gene from the Australian echidna Tachyglossus aculeatus (Monotremata). Mol. Phylogenet. Evol. 12: 205-214.Google Scholar
  28. Luckett, W. P. (1994). Suprafamily relationships within marsupialia: Resolution and discordance from multidisciplinary data. J. Mamm. Evol. 2: 255-283.Google Scholar
  29. Marshall, L. G., Case, J. A., and Woodburne, M. O. (1990). Phylogenetic relationships of the families of marsupials. In: Current Mammalogy, H. H. Genoways, ed., Vol. 2, pp. 433-505, Plenum, New York.Google Scholar
  30. Miller, R. D., and Rosenberg, G. H. (1997). Recombination activating gene-1 of the opossum Monodelphis domestica. Immunogenetics 45: 341-342.Google Scholar
  31. Miska, K. B., Harrison, G. A., Hellman, L., and Miller, R. D. (2002). The major histocompatibility complex in monotremes: An analysis of the evolution of Mhc class I genes across all three mammalian subclasses. Immunogenetics 54: 381-393.Google Scholar
  32. Miska, K. B., Hellman, L., and Miller, R. D. (2003). Characterization of beta(2)-microglobulin coding sequence from three non-placental mammals: The duckbill platypus, the short-beaked echidna, and the grey short-tailed opossum. Dev. Comp. Immunol. 27: 247-256.Google Scholar
  33. Nei, M., and Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418-426.Google Scholar
  34. Osborne, M. J., Christidis, L., and Norman, J. A. (2002). Molecular phylogenetics of the Diprotodontia (kangaroos, wombats, koala, possums, and allies). Mol. Phylogenet. Evol. 25: 219-228.Google Scholar
  35. Palma, R. E., and Spotorno, A. E. (1999). Molecular systematics of marsupials based on the rRNA 12S mitochondrial gene: The phylogeny of Didelphimorphia and of the living fossil microbiotheriid Dromiciops gliroides Thomas. Mol. Phylogenet. Evol. 13: 525-535.Google Scholar
  36. Penny, D., and Hasegawa, M. (1997). The platypus put in its place. Nature 387: 549-550.Google Scholar
  37. Phillips, M. J., and Penny, D. (2003). The root of the mammalian tree inferred from whole mitochondrial genomes. Mol. Phylogenet. Evol. 28: 171-185.Google Scholar
  38. Posada, D., and Crandall, K. A. (1998). MODELTEST: Testing the model of DNA substitution. Bioinformatics 14: 817-818.Google Scholar
  39. Retief, J. D., Krajewski, C., Westerman, M., Winkfein, R. J., and Dixon, G. H. (1995). Molecular phylogeny and evolution of marsupial protamine P1 genes. Proc. R. Soc. Lond. B 259: 7-14.Google Scholar
  40. Retief, J. D., Winkfein, R. J., and Dixon, G. H. (1993). Evolution of the monotremes: The sequence of the protamine P1 genes of platypus and echidna. Eur. J. Biochem. 218: 457-461.Google Scholar
  41. Springer, M. S., Burk, A., Kavanagh, J. R., Waddell, V. G., and Stanhope, M. J. (1997). The interphotoreceptor retinoid binding protein gene in therian mammals: Implications for higher level relationships and evidence for loss of function in the marsupial mole. Proc. Natl. Acad. Sci. U.S.A. 94: 13754-13759.Google Scholar
  42. Springer, M. S., DeBry, R. W., Douady, C., Amrine, H. M., Madsen, O., de Jong, W. W., and Stanhope, M. J. (2001). Mitochondrial versus nuclear gene sequences in deep level mammalian phylogeny reconstruction. Mol. Biol. Evol. 18: 132-143.Google Scholar
  43. Springer, M. S., and Kirsch, J. A. W. (1989). Rates of single-copy evolution in phalangeriform marsupials. Mol. Biol. Evol. 6: 331-341.Google Scholar
  44. Springer, M. S., and Kirsch, J. A. W. (1991). DNA hybridization, the compression effect and the radiation of diprotodontian marsupials. Syst. Zool. 40: 131-151.Google Scholar
  45. Springer, M. S., Westerman, M., and Kirsch, J. A. W. (1994). Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation. J. Mamm. Evol. 2: 85-115.Google Scholar
  46. Swofford, D. (1998). Phylogenetic Analysis Using Parsimony and Other Methods (PAUP*4.0b4a), Sinauer Associates, Sunderland, MA.Google Scholar
  47. Szalay, F. S. (1982). A new appraisal of marsupial phylogeny and classification. In: Carnivorous Marsupials, M. Archer, ed., Vol. 2, pp. 621-640, Royal Zoological Society of New South Wales, Sydney.Google Scholar
  48. Szalay, F. S. (1994). Evolutionary History of the Marsupials and an Analysis of Osteological Characters, Cambridge University Press, New York.Google Scholar
  49. Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J. (2000). Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188-192.Google Scholar
  50. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL-W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.Google Scholar
  51. Toyosawa, S., O'hUigin, C., Figueroa, F., Tichy, H., and Klein, J. (1998). Identification and characterization of amelogenin genes in monotremes, reptiles and amphibians. Proc. Natl. Acad. Sci. U.S.A. 95: 13056-13061.Google Scholar
  52. Toyosawa, S., O'hUigin, C., and Klein, J. (1999). The dentin matrix protein 1 gene of prototherian and metatherian mammals. J. Mol. Evol. 48: 160-167.Google Scholar
  53. Troughton, E. (1957). Furred Animals of Australia, 6th edn., Angus and Robertson, Sydney.Google Scholar
  54. Venkatesh, B., Erdmann, M. V., and Brenner, S. (2001). Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc. Natl. Acad. Sci. U.S.A. 98: 11382-11387.Google Scholar
  55. Waddell, P. J., and Shelley, S. (2003). Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, Γ-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Mol. Phylogenet. Evol. 28: 197-224.Google Scholar
  56. Yang, Z., and Nielsen, R. (2000). Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17: 32-43.Google Scholar
  57. Zeller, U. (1999). Mammalian reproduction: Origins and evolutionary transformations. Zool. Anz. 238: 117-130.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Michelle L. Baker
    • 1
  • John P. Wares
    • 1
  • Gavan A. Harrison
    • 2
  • Robert D. Miller
    • 1
  1. 1.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.School of Science, Food and HorticultureUniversity of Western SydneyPenrith South DCAustralia

Personalised recommendations