Journal of Mammalian Evolution

, Volume 10, Issue 4, pp 335–361 | Cite as

Is Sequence Heterochrony an Important Evolutionary Mechanism in Mammals?

  • Olaf R. P. Bininda-Emonds
  • Jonathan E. Jeffrey
  • Michael K. Richardson


It is postulated widely that changes in developmental timing (i.e., heterochrony) represent a major mechanism of evolutionary change. However, it is only with recent methodological advances that changes in the order in which development proceeds (sequence heterochrony) can be identified and quantified. We apply these techniques to examine whether heterochrony in the early embryonic (organogenetic) period has played an important role in the diversification of mammals. Although we find clear instances of sequence heterochrony in mammals, particularly between eutherians and marsupials, the majority of mammalian lineages that we could examine (those within the major clades Euarchontoglires and Laurasiatheria) show few or no heterochronic changes in the 116 events examined (e.g., Artiodactyla, Euarchonta, Fereuungulata, Glires, Primates, Rodentia). This is in contrast with the timing shifts reported between and within other tetrapod clades. Our results suggest that sequence heterochrony in embryonic stages has not been a major feature of mammalian evolution. This might be because mammals, and perhaps amniotes in general, develop for an extended time in a protected environment, which could shield the embryos from strong diversifying selection. Our results are also consistent with the view that mammal embryos are subject to special developmental constraints. Therefore, other mechanisms explaining the diversity of extant mammals must be sought.

development event-pair heterochrony Mammalia Eutheria event-pair cracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. A. (1992). Stages of development and sequence of bone formation in the little brown bat, Myotis lucifigus. J. Mammal. 73: 160–167.Google Scholar
  2. Alberch, P. (1985). Problems with the interpretation of developmental sequences. Syst. Zool. 34: 46–58.Google Scholar
  3. Alroy, J. (1999). The fossil record of North American mammals: Evidence for a Paleocene evolutionary radiation. Syst. Biol. 48: 107–118.PubMedGoogle Scholar
  4. Amrine-Madsen, H., Koepfli, K. P., Wayne, R. K., and Springer, M. S. (2003). A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol. Phylogenet. Evol. 28: 225–240.CrossRefPubMedGoogle Scholar
  5. Bard, J. B. L. (1977). A unity underlying the different zebra striping patterns. J. Zool. 183: 527–539.Google Scholar
  6. Bininda-Emonds, O. R. P., Jeffery, J. E., Coates, M. I., and Richardson, M. K. (2002). From Haeckel to event-pairing: The evolution of developmental sequences. Theory Biosci. 121: 297–320.Google Scholar
  7. Bryden, M. M., Evans, H. E., and Binns, W. (1972). Embryology of the sheep. I. Extraembryonic membranes and the development of body form. J. Morphol. 138: 169–186.PubMedGoogle Scholar
  8. Corneli, P. S. (2002). Complete mitochondrial genomes and eutherian evolution. J. Mammal. Evol. 9: 281–305.Google Scholar
  9. de Jong, W. W., van Dijk, M. A., Poux, C., Kappe, G., van Rheede, T., and Madsen, O. (2003). Indels in protein-coding sequences of Euarchontoglires constrain the rooting of the eutherian tree. Mol. Phylogenet. Evol. 28: 328–340.PubMedGoogle Scholar
  10. de Lange, D., Jr., and Nierstrasz, H. F. (1932). Tabellarische Übersicht der Entwicklung von Tupaia javanica Horsf, A. Oosthoek Verlag A.G., Utrecht.Google Scholar
  11. Duellman, W. E., and Trueb, L. (1994). Biology of Amphibians, Johns Hopkins University Press, Baltimore.Google Scholar
  12. Galis, F. (1999). Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J. Exp. Zool. 285: 19–26.PubMedGoogle Scholar
  13. Gould, S. J. (1977). Ontogeny and Phylogeny, Belknap Press, Cambridge, MA.Google Scholar
  14. Gould, S. J. (1982). Change in developmental timing as a mechanism of macroevolution. In: Evolution and Development, J. T. Bonner, ed., pp. 333–346, Springer-Verlag, New York.Google Scholar
  15. Gribnau, A. A. M., and Geijsberts, L. G. M. (1981). Developmental Stages in the Rhesus Monkey (Macaca mulatta), Springer-Verlag, Berlin.Google Scholar
  16. Harman, M. T., and Prickett, M. (1932). The development of the external form of the guinea-pig (Cavia cobaya) between the ages of eleven days and twenty days of gestation. Amer. J. Anat. 49: 351–378.Google Scholar
  17. Harman, M. T., and Prickett Dobrovolny, M. (1933). The development of the external form of the guinea-pig (Cavia cobaya) between the ages of 21 days of and 35 days of gestation. J. Morphol. 54: 493–519.Google Scholar
  18. Heape, W. (1883a). The development of the mole (Talpa europea). The formation of the germinal layers and early development of the meduallry groove and notochord. Q. J. Microscop. Sci. 23: 412–452.Google Scholar
  19. Heape, W. (1883b). The development of the mole (Talpa europea). Stage E to J. Q. J. Microscop. Sci. 26: 123–163.Google Scholar
  20. Henneberg, B. (1937). Normentafel zur Entwicklungsgeschichte der Wanderratte (Rattus norvegicus Erxleben), Verlag von Gustav Fischer, Jena.Google Scholar
  21. Hubrecht, A. A. W., and Keibel, F. (1907). Normentafel zur Entwicklungsgeschichte des Koboldmaki (Tarsius spectrum) und des Plumplori (Nycticebus tardigradus), Verlag von Gustav Fischer, Jena.Google Scholar
  22. Huisman, F. J., and de Lange, D., Jr. (1937). Tabellarische Übersicht der Entwicklung von Manis javanica Desm, A. Oosthoek Verlag A.G., Utrecht.Google Scholar
  23. Jacobfeuerborn, H. (1908). Die intrauterine Ausbildung der äuβeren Körperform des Igels (Erinaceus europaeus L.) mit Berücksichtigung der Entwicklung der wichtigeren inneren Organe. Z. Wiss. Zool. 91: 382–420.Google Scholar
  24. Jeffery, J. E., Bininda-Emonds, O. R. P., Coates, M. I., and Richardson, M. K. (2002a). Analyzing evolutionary patterns in vertebrate embryonic development. Evol. Dev. 4: 292–302.PubMedGoogle Scholar
  25. Jeffery, J. E., Richardson, M. K., Coates, M. I., and Bininda-Emonds, O. R. P. (2002b). Analyzing developmental sequences within a phylogenetic framework. Syst. Biol. 51: 478–491.PubMedGoogle Scholar
  26. Jerison, H. J. (1973). Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  27. Keibel, F. (1897). Normentafel zur Entwicklungsgeschichte des Schweines (Sus scrofa domesticus), Verlag von Gustav Fischer, Jena.Google Scholar
  28. Keibel, F., ed. (1897–1938). Normentafeln zur Entwicklungsgeschichte der Wirbelthiere, Verlag von Gustav Fischer, Jena.Google Scholar
  29. Keibel, F., and Abraham, K. (1900). Normentafel zur Entwicklungsgeschichte des Huhnes (Gallus domesticus), Verlag von Gustav Fischer, Jena.Google Scholar
  30. Keibel, F., and Elze, C. (1908). Normentafel zur Entwicklungsgeschichte des Menschen, Verlag von Gustav Fischer, Jena.Google Scholar
  31. Langman, J. (2000). Langman's Medical Embryology, 8th ed., Lippincott Williams & Wilkins, Philadelphia.Google Scholar
  32. Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. (2001). Molecular and morphological supertrees for eutherian (placental) mammals. Science 291: 1786–1789.PubMedGoogle Scholar
  33. Luo, Z.-X., Crompton, A. W., and Sun, A.-L. (2001). A new mammaliform from the Early Jurassic and evolution of mammalian characteristics. Science 292: 1535–1540.PubMedGoogle Scholar
  34. Mabee, P. M., and Trendler, T. A. (1996). Development of the cranium and paired fins in Betta splendens (Teleosti: Percomorpha): Intraspecific variation and interspecific comparisons. J. Morphol. 227: 249–287.Google Scholar
  35. Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.PubMedGoogle Scholar
  36. McCrady, E., Jr. (1938). The Embryology of the Opossum, The Wistar Institute of Anatomy and Biology, Philadelphia.Google Scholar
  37. McKinney, M. L., and McNamara, K. J. (1991). Heterochrony: The Evolution of Ontogeny, Plenum Press, New York.Google Scholar
  38. Minot, C. S., and Taylor, E. (1905). Normal Plates of the Development of the Rabbit (Lepus cuniculus L.) Verlag von Gustav Fischer, Jena.Google Scholar
  39. Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.PubMedGoogle Scholar
  40. Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.PubMedGoogle Scholar
  41. Nowak, R. M. (1999). Walker's Mammals of the World, 6th ed., The John Hopkins University Press, Baltimore.Google Scholar
  42. Nunn, C. L., and Smith, K. K. (1998). Statistical analyses of developmental sequences: The craniofacial region in marsupial and placental mammals. Amer. Nat. 152: 82–101.Google Scholar
  43. O'Rahilly, R., and Müller, F. (1987). Developmental Stages in Human Embryos, Carnegie Institute of Washington, Meriden, CT.Google Scholar
  44. Peter, K. (1904). Normentafel zur Entwicklungsgeschichte der Zauneidechse (Lacerta agilis), Verlag von Gustav Fischer, Jena.Google Scholar
  45. Raff, R. A. (1996). The Shape of Life: Genes, Development, and the Evolution of Animal From, University of Chicago Press, Chicago.Google Scholar
  46. Richardson, M. K. (1999). Vertebrate evolution: The developmental origins of adult variation. BioEssays 21: 604–613.PubMedGoogle Scholar
  47. Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A., and Hanken, J. (1998). Somite number and vertebrate evolution. Development 125: 151–160.PubMedGoogle Scholar
  48. Richardson, M. K., and Oelschläger, H. A. (2002). Time, pattern and heterochrony: A study of hyperphalangy in the dolphin embryo flipper. Evol. Dev. 4: 435–444.PubMedGoogle Scholar
  49. Sakurai, T. (1906). Normentafel zur Entwicklungsgeschichte des Rehes (Cervus capreolus), Verlag von Gustav Fischer, Jena.Google Scholar
  50. Sánchez-Villagra, M. R. (2002). Comparative patterns of postcranial ontogeny in therian mammals: an analysis of relative timing of ossification events. J. Exp. Zool. (Mol. Dev. Evol.) 294: 264–273.Google Scholar
  51. Sanderson, M. J., and Donoghue, M. J. (1989). Patterns of variation in levels of homoplasy. Evolution 43: 1781–1795.Google Scholar
  52. Scott, J. P. (1937). The embryology of the guinea pig I. A table of normal development. Amer. J. Anat. 60: 397–432.Google Scholar
  53. Shubin, N. H., and Alberch, P. (1986). A morphogenetic approach to the origin and basic organisation of the tetrapod limb. In: Evolutionary Biology, M. K. Hecht, B. Wallace, and G. I. Prance, eds., pp. 319–387, Plenum Press, New York.Google Scholar
  54. Smith, K. K. (1996). Integration of craniofacial structures during development in mammals. Amer. Zool. 36: 70–79.Google Scholar
  55. Smith, K. K. (1997). Comparative patterns of craniofacial development in eutherian and metatherian mammals. Evolution 51: 1663–1678.Google Scholar
  56. Springer, M. S., Murphy, W. J., Eizirik, E., and O'Brien, S. J. (2003). Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc. Natl. Acad. Sci. U.S.A. 100: 1056–1061.PubMedGoogle Scholar
  57. Sterba, O., Klima, M., and Schildger, B. (2000). Embryology of Dolphins, Springer, Berlin.Google Scholar
  58. Swofford, D. L., and Maddison, W. P. (1987). Reconstructing ancestral character states under Wagner parsimony. Math. Biosci. 87: 199–229.CrossRefGoogle Scholar
  59. Theiler, K. (1989). The House Mouse: Atlas of Embryonic Development, Springer Verlag, New York.Google Scholar
  60. Thomas, J. W., et al. (70 other authors). (2003). Comparative analysis of multi-species sequences from targeted genomic regions. Nature 424: 788–793.PubMedGoogle Scholar
  61. Velhagen, W. A. (1997). Analyzing developmental sequences using sequence units. Syst. Biol. 46: 204–210.PubMedGoogle Scholar
  62. Vogel, P. (1973). Vergleichende Untersuchung zum Ontogenesemodus einheimischer Soriciden (Crocidura russula, Sorex araneus und Neomys fodiens). Rev. Suisse Zool. 79: 1201–1332.Google Scholar
  63. Völker-Brünn, O. (1922). Normentafel zur Entwicklungsgeschichte des Ziesels (Spermophilus citillus), Verlag von Gustav Fischer, Jena.Google Scholar
  64. Waddell, P. J., Okada, N., and Hasegawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48: 1–5.PubMedGoogle Scholar
  65. Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. Amer. Zool. 36: 36–43.Google Scholar
  66. Wake, M. H. (1997). Amphibian locomotion in evolutionary time. Zoology 100: 141–151.Google Scholar
  67. Wanek, N., Muneoka, K., Holler-Dinsmore, G., Burton, R., and Bryant, S. V. (1989). A staging system for mouse limb development. J. Exp. Zool. 249: 41–49.PubMedGoogle Scholar
  68. Wheeler, Q. D. (1990). Ontogeny and character phylogeny. Cladistics 6: 225–268.Google Scholar
  69. Wilson, D. E., and Reeder, D. M., eds. (1993). Mammal Species of the World: Ataxonomic and Geographic Reference, Smithsonian Institution Press, Washington.Google Scholar
  70. Wolpert, L. (1994). The evolutionary origin of development: Cycles, patterning, privilege and continuity.Development Supplement 79–84.Google Scholar
  71. Yasui, K. (1992). Embryonic development of the house shrew (Suncus murinus). I. Embryos at stages 9 and 10 with 1 to 12 pairs of somites. Anat. Embryol. 186: 49–65.PubMedGoogle Scholar
  72. Yasui, K. (1993). Embryonic development of the house shrew (Suncus murinus). II. Embryos at stages 11 and 12 with 13 to 29 pairs of somites, showing limb bud formation and closed cephalic neural tube. Anat. Embryol. 187: 45–65.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Olaf R. P. Bininda-Emonds
    • 1
  • Jonathan E. Jeffrey
    • 1
  • Michael K. Richardson
    • 1
  1. 1.Institute of BiologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations