Advertisement

Journal of Mammalian Evolution

, Volume 10, Issue 3, pp 195–248 | Cite as

Monotremes as Pretribosphenic Mammals

  • Michael O. Woodburne
Article

Abstract

An abundance of evidence points to the conclusion that monotremes are phyletically allied with pretribosphenic, rather than with tribosphenic, mammals. Monotremes do not have a tribosphenic dentition. Character analyses that apply tribosphenic cusp terminology to monotreme dentitions are implicitly limited thereby. A review of the molar dentition of living and fossil monotremes suggests that upper molars are composed of a strongly developed pretribosphenic paracone and metacone and a series of stylar cusps attached to them in a bicrescentic, or dilambdodont, fashion. The lower molars are composed of a trigonid, with a pretribosphenic protoconid, paraconid, and metaconid, and distal metacristid. The paraconid of m1 is reduced or lost. The talonid is composed of the pretribosphenic hypoconid, hypoconulid, and cristid obliqua. There is no evidence for a tribosphenic entoconid, nor for a talonid basin. There was no tribosphenic protocone. Monotremes are not related to other taxa included in Australosphenida. The dentition of Cretaceous taxa, such as Teinolophos and Steropodon, apparently still functioned by orthal mechanisms, whereas by the “medial” Paleocene (Monotrematum) and later (Obdurodon), monotremes appear to have accommodated a diet of soft-bodied organisms that left little trace of a mastication regime that had changed to apical wear via propalinal motion. Monotremes appear to be modern representatives of a Mesozoic radiation of pretribosphenic mammals centered largely in Gondwana, where they still reside today.

monotremes dentition cusp homologies mastication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. Allin, E. F., and Hopson, J. A. (1991). Evolution of the auditory system in Synapsida (“mammal-like reptiles” and primitive mammals) as seen in the fossil record. In: The Evolutionary Biology of Hearing, D. B. Webster, R. R. Fay, and A. N. Popper, eds., pp. 587–614, Springer-Verlag, New York.Google Scholar
  2. Archer, M., Arena, R., Bassarova, M., Black, K., Brammall, J., Cooke, B., Creaser, P., Crosby, K., Gillespie, A., Godthelp, H., Gott, M., Hand, S. J., Kear, B., Krikmann, A., Mackness, B., Muirhead, J., Musser, A., Myers, T., Pledge, N., Wang, Y., and Wroe, S. (1999). The evolutionary history of notoryctids, yingabalanarids, yalkaparidontids and other enigmatic groups of Australian marsupials. In: The Evolutionary History and Diversity of Australian Mammals, M. Archer, H. Godthelp, M. Gott, Y. Wang, and A. Musser, eds., Aust. Mammal. 21: 13–15.Google Scholar
  3. Archer, M., Flannery, T. F., Ritchie, A., and Molnar, R. E. (1985). First Mesozoic mammals from Australia—An Early Cretaceous monotreme. Nature 318: 363–366.Google Scholar
  4. Archer, M., Jenkins, F. A., Jr., Hand, S. J., Murray, P., and Godthelp, H. (1993). Description of the skull and non-vestigial dentition of a Miocene Platypus (Obdurodon dicksoni, n. sp.) from Riversleigh, Australia, and the problem of monotreme origins. In: Platypus and Echidnas, M. L. Augee, ed., pp. 15–27, Royal Zoological Society of New South Wales, Sydney.Google Scholar
  5. Archer, M., Murray, P., Hand, S., and Godthelp, H. (1992). Reconsideration of monotreme relationships based on the skull and dentition of the Miocene Obdurodon dicksoni. In: Mammalian Phylogeny, Vol. 1, Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. Novacek, and M. C. McKenna, eds., pp. 75–94, Springer-Verlag, New York.Google Scholar
  6. Berggren, W. A., Kent, D. V., Swisher, C. C., III, and Aubry, M.-P. (1995). A revised Cenozoic geochronology and chronostratigraphy. In: Geochronology, Time Scales and Global Stratigraphic Correlation, W. A. Berggren, D. V. Kent, M.-P. Aubry, and J. Hardenbol, eds., pp. 129–212, SEPM Special Publication 54, Tulsa.Google Scholar
  7. Bonaparte, J. F. (1986). Sobre Mesungulatum houssayi y nuevos mamíferos Cretácicos de Patagonia, Argentina. Congreso Arg. de Paleont. y Biosetrat. 4, Actas 2: 63–95.Google Scholar
  8. Bonaparte, J. F., and Rougier, G. (1987). Mamiferos del Cretaceo inferior de Patagonia. IV Congreso Latinoamericano de Paleontologia, Bolivia 1: 343–359.Google Scholar
  9. Bond, M., Carlini, A. A., Goin, F. J., Legarreta, L., Ortiz-Jaurequizar, E., Pascual, R., andUliana, M.A.(1995). Episodes in South American land mammal evolution and sedimentation: Testing their apparent concurrence in a Paleogene succession from central Patagonia. VI Congr. Arg. Paleo. Biostrat. Actas 47–58.Google Scholar
  10. Bown, T. M., and Kraus, M. J. (1979). Origin of the tribosphenic molar and metatherian and eutherian dental formulae. In: Mesozoic Mammals; The First Two-Thirds of Mammalian History. J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds., pp. 172–181, University of California Press, Berkeley.Google Scholar
  11. Butler, P. M. (1988). Docodont molars as tribosphenic analogues (Mammalia, Jurassic). In: Teeth Revisited, D. E. Russell, J.-P. Santoro, and D. Sigogneau-Russell, eds., pp. 329–340, Memoires du Mus. nat. d'Hist. nat. (C), Vol. 53.Google Scholar
  12. Butler, P. M. (1990). Early trends in the evolution of tribosphenic molars. Biol. Rev. 65: 529–552.Google Scholar
  13. Chow, M., and Rich, T. H. (1982). Shuotherium dongi, n. gen. and sp., a therian with pseudo-tribosphenic molars from the Jurassic of Sichuan, China. Aust. Mammal. 5: 127–142.Google Scholar
  14. Cifelli, R. L., and Muizon, C. de (1997). Dentition and jaw of Kokopellia juddi, a primitive marsupial or near-marsupial from the medial Cretaceous of Utah. J. Mammal. Evol. 4: 241–258.Google Scholar
  15. Clemens, W. A., and Mills, J. R. E. (1971). Review of Peramus tenuirostris Owen (Eupantotheria, Mammalia). Bull. Brit. Mus. (Nat. Hist.), Geol. Ser. 20: 87–113.Google Scholar
  16. Crompton, A. W. (1971). The origin of the tribosphenic molar. In: Early Mammals, D. M. Kermack and K. A. Kermack, eds., pp. 65–87. Linn. Soc. Zool. J. 50(Suppl. 1).Google Scholar
  17. Crompton, A. W., and Jenkins, F. A., Jr. (1973). Mammals from reptiles: A review of mammalian origins. Annu. Rev. Earth Planet. Sci. 1: 131–155.Google Scholar
  18. Crompton, A. W., and Luo, Z. (1993). Relationships of the Liassic mammals Sinoconodon, Morganucodon oehleri, and Dinnetherium. In: Mammalian Phylogeny, Vol. 1: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 30–44, Springer Verlag, New York.Google Scholar
  19. Flannery, T., Archer, M., Rich, T. H., and Jones, R. (1995). A new family of monotremes from the Cretaceous of Australia. Nature 377: 418–420.Google Scholar
  20. Flynn, J. J., Parrish, M. Rakotosamimanana, B., Simpson, W. F., and Wyss, A. R. (1999). A middle Jurassic mammal from Madagascar. Nature 401: 57–60.Google Scholar
  21. Fox, R. C. (1975). Molar structure and function in the early Cretaceous mammal Pappotherium: Evolutionary implications for Mesozoic Theria. Can. J. Earth Sci. 12: 412–442.Google Scholar
  22. Fox, R. C., and Meng J. (1997). An X-radiographic and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): Implications for mammalian phylogeny and evolution of hearing. Zool. J.Linn. Soc. 121: 249–291.Google Scholar
  23. Green, H. L. H. H. (1937). The development and morphology of the teeth of Ornithorhynchus. Phil. Trans. R. Soc. Lond. B228: 367–420.Google Scholar
  24. Hay, W. W., DeConto, R. M., Wold, C. N., Wilson, K. M., Voigt, S., Schulz, M., Wold, A. R., Dullo, W.-C., Ronov, A. B., Balukhovsky, A. N., and Söding, E. (1999). Alternative global Cretaceous paleogeography. In: Evolution of the Cretaceous Ocean-Climate System, E. Barrera and C. C. Johnson, eds., pp. 1–47, Geological Society of America Special Paper 332.Google Scholar
  25. Hu, Y., Wang, Y., Luo, Z., and Li, C. (1997). A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390: 137–142.Google Scholar
  26. Ji, Q., Luo, Z., and Ji, S. (1999). A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398: 326–330.Google Scholar
  27. Ji, Q., Luo, Z.-X., Yuan, C.-X., Wible, J. R., Zhang, J.-P., and Georgi, J. A. (2002). The earliest known eutherian mammal. Nature 416: 816–822.Google Scholar
  28. Kermack, D. M., Kermack, K. A., and Mussett, F. (1968). The Welsh pantothere, Kuehneotherium praecursoris. Zool. J. Linn. Soc. 47: 407–423.Google Scholar
  29. Kielan-Jaworowska, Z. (1996). Characters of multituberculates neglected in phylogenetic analyses of early mammals. Lethaia 29: 249–266.Google Scholar
  30. Kielan-Jaworowska, Z., Cifelli, R. L., and Luo, Z. (1998). Alleged Cretaceous placental from down under. Lethaia 31: 267–268.Google Scholar
  31. Kielan-Jaworowska, Z., Cifelli, R. L., and Luo, Z.-X. (2002). Dentition and relationships of Shuotherium. Acta Palaeontol. Polon. 47: 479–486.Google Scholar
  32. Kielan-Jaworowska, Z., Crompton, A. W., and Jenkins, F. A. (1987). The origin of egg-laying mammals. Nature 326: 871–873.Google Scholar
  33. Krause, D. W., Prasad, G. V. R., von Koenigswald, W., Sahni, A., and Grine, F. E. (1997). Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390: 504–507.Google Scholar
  34. Luo, Z-X., Cifelli, R. L., and Kielan-Jaworowska, S. (2001). Dual origin of tribosphenic mammals. Nature 409: 53–57.Google Scholar
  35. Luo, Z.-X., Cifelli, R. L., and Kielan-Jaworowska, S. (2002). In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol. Polon. 47: 1–78.Google Scholar
  36. McKenna, M. C. (1975). Towards a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 21–46, Plenum Press, New York.Google Scholar
  37. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  38. McKenna, M. C., and Bell, S. K. (2000, Oct. 23). Mammal Classification. ftp//ftp.amnh.org/people/mckenna/ Mammalia.txn.sit. Read, displayed, and searchable with Unitaxon© Browser. CD-ROM. 2001. Boulder, CO: Mathemaethetics, Inc.Google Scholar
  39. McKenna, M. C., and Bell, S. K. (2002, Oct. 23). Mammal Classification. ftp//ftp.amnh.org/people/mckenna/ Mammalia.txn.sit. Read, displayed, and searchable with Unitaxon© Browser. CD-ROM. 2002. Boulder, CO: Mathemaethetics, Inc.Google Scholar
  40. Meng, J., and Wyss, A. R. (1995). Monotreme affinities and low-frequency hearing suggested by multituberculate ear. Nature 377: 141–144.Google Scholar
  41. Murray, P. F. (1981). A unique jaw mechanism in the Echidna, Tachyglossus aculeatus (Monotremata). Aust. J. Zool. 2: 1–5.Google Scholar
  42. Musser, A. M., and Archer, M. (1998). New information about the skull and dentary of the Miocene platypus Obdurodon dicksoni, and a discussion of ornithorhynchid relationships. Phil. Trans. Roy. Soc. Lond. B 353: 1063–1079.Google Scholar
  43. Pascual, R., Archer, M., Ortiz-Jaureguizar, E., Prado, J. L, Godthelp, H., and Hand, S. J. (1992a). First discovery of monotremes in South America. Nature 356: 704–705.Google Scholar
  44. Pascual, R., Archer, M., Ortiz Jaureguizar, Prado, J. L., Godthelp, H., and Hand, S. J. (1992b). The first non-Australian monotreme: An early Paleocoene South American platypus (Monotremata, Ornithorhynchidae). In: Platypus and Ehidnas, M. L. Augee, ed., pp. 1–14, Royal Zoological Society of New South Wales, Sydney.Google Scholar
  45. Pascual, R., and Goin, F. J. (2001). Non-tribosphenic Gondwanan mammals, and a distinct attainment of the molars reversed triangle pattern. In: International Symposium on Mesozoic Terrestrial Ecostytems, H. A. Leanza, ed., pp. 157–162, Assoc. Paleont. Argent. Spec. Publ. 7, Buenos Aires.Google Scholar
  46. Pascual, R., Goin, F. J., Balarino, L., and Udrizar Sauthier, D. E. (2002). New data on the Paleocene monotreme Monotrematum sudamericanum, and the convergent evolution of triangulate molars. Acta Palaeontol. Polon. 47: 487–492.Google Scholar
  47. Patterson, B. (1956). Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana Geol. 13: 1–105.Google Scholar
  48. Rauhut, O. W. M., Martin, T., Ortiz-Jaureguizar, E., and Puerta, P. (2002). A Jurassic mammal from South America. Nature 416: 165–168.Google Scholar
  49. Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and van Klaveren, N. (1997). A tribosphenic mammal from the Mesozoic of Australia. Science 278: 1438–1432.Google Scholar
  50. Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and van Klaveren, N. (1999). Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Rec. Queen Victoria Mus. 106: 1–35.Google Scholar
  51. Rich, T. H., Flannery, T. F., Trusler, P., Kool, L., van Klaveren, N. A., and Vickers-Rich, P. (2001a). A second tribosphenic mammal from the Mesozoic of Australia. Rec. Queen Victoria Mus. 110: 1–9.Google Scholar
  52. Rich, T. H., Flannery, T. F., Trusler, P., Kool, L., van Klaveren, N. A., and Vickers-Rich, P. (2002). Evidence that monotremes and ausktribosphenids are not sister groups. J. Vert. Paleontol. 22: 466–469.Google Scholar
  53. Rich, T. H., Vickers-Rich, P., Trusler, P., Flannery, T. F., Cifelli, R., Constantine, A., Kool, L., and van Klaveren, N.A. (2001b). Monotreme nature of the Australian Early Cretaceous mammal Teinolophos. Acta Palaeontol. Polon. 46: 113–118.Google Scholar
  54. Rougier, G. W., Wible, J. R., and Hopson, J. A. (1992). Reconstruction of cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: Implications for the evolution of the mammalian cranial vascular system. J. Vert. Paleontol. 12: 188–216.Google Scholar
  55. Rougier, G. W., Wible, J. R., and Hopson, J. A. (1996). Basicranial anatomy of Priacodon fruitaensis (Triconodontidae, Mammalia) from the late Jurassic of Colorado, and a reappraisal of mammaliaform interrelationships. Am. Mus. Nat. Hist. Novitates 3183: 38.Google Scholar
  56. Rougier, G. W., Wible, J. R., and Novacek, M. J. (1998). New specimens of Deltatheridium, implications for the early history of marsupials. Nature 396: 459–463.Google Scholar
  57. Rowe, T. (1988). Definition, diagnosis, and origin of mammalia. J. Vert. Paleontol. 8: 241–264.Google Scholar
  58. Rowe, T. (1993). Phylogenetic systematics and the early history of mammals. In: Mammal Phylogeny, Vol. 1: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 129–145, Springer-Verlag, New York.Google Scholar
  59. Sigogneau-Russell, D. (1998). Discovery of a late Jurassic Chinese mammal in the upper Bathonian of England. C. R. Acad. Sci. Paris, Earth Planet. Sci. 327: 571–576.Google Scholar
  60. Sigogneau-Russell, D. (1999). Réévaluation des Peramura (Mammalia, Cladotheria) sur la base de nouveaux spécimens du Crétacé inférieur d'Angleterre et du Maroc. Geodiversitas 21: 93–127.Google Scholar
  61. Sigogneau-Russell, D., and Ensom, P. C. (1998). Thereuodon (Theria, Symmetrodonta), from the Early Cretaceous of North America and Europe, and a brief review of symmetrodonts. Cretaceous Res. 19: 445–470.Google Scholar
  62. Sigogneau-Russell, D., Hooker, J. J., and Ensom, P. C. (2001). The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the “dual origin” of Tribosphenida. C. R. Acad. Sci. Paris. Earth Planet. Sci. 333: 141–147.Google Scholar
  63. Simpson, G. G. (1929). The dentition of Ornithorhynchus as evidence of its affinities. Am. Mus. Nat. Hist. Novitates 390: 1–15.Google Scholar
  64. Simpson, G. G. (1936). Studies of the earliest mammalian dentitions: Dent. Cosmos: 1–24.Google Scholar
  65. Swofford, D. L. 2001. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), v. 4. Sinauer, MA.Google Scholar
  66. Wang, Y., Clemens, W. A., Hu, Y., and Li, C. (1998). A probable pseudo-tribosphenic upper molar from the Late Jurassic of China and the early radiation of the Holotheria. J. Vert. Paleontol. 18: 777–787.Google Scholar
  67. Wang, Y., Hu, Y., Meng, J., and Li, C. (2001). An ossified Meckel's cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science 294: 357–361.Google Scholar
  68. Wible, J. R., and Hopson, J. A. (1993). Basicranial evidence for early mammal phylogeny. In: Mammal Phylogeny, Vol. 1: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 45–62, Springer-Verlag, New York.Google Scholar
  69. Wible, J. R., Rougier, G. W., Novacek, M. J., McKenna, M. C., and Dashzeveg, D. (1995). A mammalian petrosal from the Early Cretaceous of Mongolia: Implications for the evolution of the ear region and mammaliamorph interrelationships. Am. Mus. Nat. Hist. Novitates 3149: 1–19.Google Scholar
  70. Woodburne, M. O., and Case, J. A. (1996). Dispersal, vicariance, and the Late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J. Mammal. Evol. 3: 121–161.Google Scholar
  71. Woodburne, M. O., MacFadden, B. J., Case, J. A., Springer, M., Pledge, N.S., Power, J. D., Woodburne, J. M., and Johnson, K. (1993). Land mammal biostratigraphy and magnetostratigraphy of the etadunna formation (late Oligocene) of South Australia. J. Vert. Paleo. 13: 132–164.Google Scholar
  72. Woodburne, M. O., Rich, T. H., and Springer, M. S. (2003). The evolution of tribospheny and the antiquity of mammalian clades. Mol. Phylogenet. Evol. 28: 360–385.Google Scholar
  73. Woodburne, M. O., and Tedford, R. H. (1975). The first Tertiary monotreme from Australia. Am. Mus. Nat. Hist. Novitates 2588: 1–11.Google Scholar
  74. Zeller, U. (1989). Die Entwicklung und Morphologie des Schädels von Ornithorhynchus anatinus (Mammalia: Prototheria: Monotremata). Abhandlungen der Senckenbergishcen Naturforschenden Gesellschaft 545: 1–188.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Michael O. Woodburne
    • 1
  1. 1.Department of Earth SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations