The Genetic Epidemiology of Breast Cancer Genes

  • Deborah Thompson
  • Douglas Easton
Article

Abstract

Genetic susceptibility to breast cancer in women is conferred by a large number of genes, of which six have so far been identified. In the context of multiple-case families, BRCA1 and BRCA2 are the most important. Mutations in these genes confer high lifetime risks of breast cancer and ovarian cancer, and more moderate risks of prostate cancer and some other cancer types. Mutations in the CHEK2 and ATM genes, by contrast, cause much more modest (2–4 fold) risks of breast cancer. Genes so far identified explain approximately 20% of the familial aggregation of breast cancer. The remaining susceptibility genes have, so far, proved illusive, suggesting that they are numerous and confer moderate risks. A variety of techniques including genome-wide association studies, use of quantitative intermediate endpoints, and resequencing of genes may be required to identify them. The identification of such genes can provide a basis for targeted prevention of breast cancer.

breast cancer BRCA1 BRCA2 ATM CHEK2 TP53 PTEN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Collaborative Group on Hormonal Factors in Breast Cancer (2001). Familial breast cancer: Collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 358:1389-1399.Google Scholar
  2. 2.
    P. Lichtenstein, N. V. Holm, P. K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki (2000). Environmental and heritable factors in the causation of cancer-Analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343:78-85.Google Scholar
  3. 3.
    J. Peto, and T. M. Mack (2000). High constant incidence in twins and other relatives of women with breast cancer. Nat. Genet. 26:411-414.Google Scholar
  4. 4.
    D. T. Bishop, L. Cannon-Albright, T. McLellan, E. J. Gardner, and M. H. Skolnick (1988). Segregation and link-age analysis of nine Utah breast cancer pedigrees. Genet. Epidemiol. 5:151-169.Google Scholar
  5. 5.
    J. M. Hall, M. K. Lee, B. Newman, J. E. Morrow, L. A. Anderson, B. Huey, and M. C. King (1990). Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684-1689.Google Scholar
  6. 6.
    R. Wooster, S. L. Neuhausen, J. Mangion, Y. Quirk, D. Ford, N. Collins, K. Nguyen, S. Seal, T. Tran, D. Averill, P. Fields, G. Marshall, S. Narod, G. M. Lenoir, H. Lynch, J. Feunteun, P. Devilee, C. J. Cornelisse, F. H. Menko, P. A. Daly, W. Ormiston, R. McManus, C. Pye, C. M. Lewis, L. A. Cannon-Albright, J. Peto, B. A. J. Ponder, M. H. Skolnick, D. F. Easton, D. E. Goldgar, and M. R. Stratton (1994). Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265:2088-2090.Google Scholar
  7. 7.
    Y. Miki, J. Swensen, D. Shattuck-Eidens, P. A. Futreal, K. Harshman, S. Tavtigian, Q. Liu, C. Cochran, L. M. Bennett, W. Ding, R. Bell, J. Rosenthal, C. Hussey, T. Tran, M. McClure, C. Frye, T. Hattier, R. Phelps, A. Haugen-Strano, H. Katcher, K. Yakumo, Z. Gholami, D. Shaffer, S. Stone, S. Bayer, C. Wray, G. Bogdan, P. Dayananth, J. Ward, P. Tonin, S. Narod, P. K. Bristow, F. H. Norris, L. Helvering, P. Morrison, P. Rosteck, M. Lai, J. C. Barrett, C. Lewis, S. Neuhausen, L. Cannon-Albright, D. Goldgar, R. Wiseman, A. Kamb, and M. H. Skolnick (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66-71.Google Scholar
  8. 8.
    R. Wooster, G. Bignell, J. Lancaster, S. Swift, S. Seal, J. Mangion, N. Collins, S. Gregory, C. Gumbs, and G. Micklem (1995). Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789-792.Google Scholar
  9. 9.
    S. V. Tavtigian, J. Simard, J. Rommens, F. Couch, D. Shattuck-Eidens, S. Neuhausen, S. Merajver, S. Thorlacius, K. Offit, D. Stoppa-Lyonnet, C. Belanger, R. Bell, S. Berry, R. Bogden, Q. Chen, T. Davis, M. Dumont, C. Frye, T. Hattier, S. Jammulapati, T. Janecki, P. Jiang, R. Kehrer, J. F. Leblanc, J. T. Mitchell, J. McArthur-Morrison, K. Nguyen, Y. Peng, C. Samson, M. Schroeder, S. C. Snyder, L. Steele, M. Stringfellow, C. Stroup, B. Swedlund, J. Swensen, D. Teng, A. Thomas, T. Tran, M. Tranchant, J. Weaver-Feldhaus, A. K. C. Wong, H. Shizuya, J. E. Eyfjord, L. Cannon-Albright, F. Labrie, M. Skolnick, B. Weber, A. Kamb, and D. E. Goldgar (1996). The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat. Genet. 12:333-337.Google Scholar
  10. 10.
    D. F. Easton, F. E. Matthews, D. Ford, A. J. Swerdlow, and J. Peto (1996). Cancer mortality in relatives of women with ovarian cancer: The OPCS Study. Office of Population Censuses and Surveys. Int. J. Cancer. 65:284-294.Google Scholar
  11. 11.
    J. Peto, D. F. Easton, F. E. Matthews, D. Ford, and A. J. Swerdlow (1996). Cancer mortality in relatives of women with breast cancer: The OPCS Study. Office of Population Censuses and Surveys. Int. J. Cancer. 65:275-283.Google Scholar
  12. 12.
    N. Collins, R. McManus, R. Wooster, J. Mangion, S. Seal, S. R. Lakhani, W. Ormiston, P. A. Daly, D. Ford, D. F. Easton, and M. R. Stratton (1995). Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene 10:1673- 1675.Google Scholar
  13. 13.
    S. A. Smith, D. F. Easton, D. G. Evans, and B. A. Ponder (1992). Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat. Genet. 2:128-131.Google Scholar
  14. 14.
    P. L. Welcsh, and M. C. King (2001). BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum. Mol. Genet. 10:705-713.Google Scholar
  15. 15.
    M. Montagna, P. M. Dalla, C. Menin, S. Agata, A. De Nicolo, L. Chieco-Bianchi, and E. D'Andrea (2003). Genomic rear-rangements account for more than one-third of the BRCA1 mutations in northern Italian breast/ovarian cancer families. Hum. Mol. Genet. 12:1055-1061.Google Scholar
  16. 16.
    T. M. Smith, M. K. Lee, C. I. Szabo, N. Jerome, M. McEuen, M. Taylor, L. Hood, and M. C. King (1996). Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res. 6:1029-1049.Google Scholar
  17. 17.
    F. Durocher, D. Shattuck-Eidens, M. McClure, F. Labrie, M. H. Skolnick, D. E. Goldgar, and J. Simard (1996). Comparison of BRCA1 polymorphisms, rare sequence variants and/or missense mutations in unaffected and breast/ovarian cancer populations. Hum. Mol. Genet. 5:835-842.Google Scholar
  18. 18.
    A. M. Dunning, M. Chiano, N. R. Smith, J. Dearden, M. Gore, S. Oakes, C. Wilson, M. Stratton, J. Peto, D. Easton, D. Clayton, and B. A. Ponder (1997). Common BRCA1 variants and susceptibility to breast and ovarian cancer in the general population. Hum. Mol. Genet. 6:285-289.Google Scholar
  19. 19.
    C. S. Healey, A. M. Dunning, M. D. Teare, D. Chase, L. Parker, J. Burn, J. Chang-Claude, A. Mannermaa, V. Kataja, D. G. Huntsman, P. D. Pharoah, R. N. Luben, D. F. Easton, and B. A. Ponder (2000). A common variant in BRCA2 is associated with both breast cancer risk and prenatal viability. Nat. Genet. 26:362-364.Google Scholar
  20. 20.
    A. B. Spurdle, J. L. Hopper, X. Chen, G. S. Dite, J. Cui, M. R. McCredie, G. G. Giles, S. Ellis-Steinborner, D. J. Venter, B. Newman, M. C. Southey, and G. Chenevix-Trench (2002). The BRCA2 372 HH genotype is associated with risk of breast cancer in Australian women under age 60 years. Cancer Epidemiol. Biomarkers Prev. 11:413-416.Google Scholar
  21. 21.
    J. Simard, P. Tonin, F. Durocher, K. Morgan, J. Rommens, S. Gingras, C. Samson, J. F. Leblanc, C. Bélanger, F. Dion, Q. Liu, M. Skolnick, D. Goldgar, D. Shattuck-Eidens, F. Labrie, and S. A. Narod (1994). Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. Nat. Genet. 8:392-398.Google Scholar
  22. 22.
    R. B. Bar-Sade, A. Kruglikova, B. Modan, E. Gak, G. Hirsh-Yechezkel, L. Theodor, I. Novikov, R. Gershoni-Baruch, S. Risel, M. Z. Papa, G. Ben Baruch, and E. Friedman (1998). The 185delAG BRCA1 mutation originated before the dispersion of Jews in the diaspora and is not limited to Ashkenazim. Hum. Mol. Genet. 7:801- 805.Google Scholar
  23. 23.
    C. F. Xu, J. A. Chambers, H. Nicolai, M. A. Brown, Y. Hujeirat, S. Mohammed, S. Hodgson, D. P. Kelsell, N. K. Spurr, D. T. Bishop, and E. Solomon (1997). Mutations and alternative splicing of the BRCA1 gene in UK breast/ovarian cancer families. Genes Chromosomes Cancer 18:102- 110.Google Scholar
  24. 24.
    L. G. Mullineaux, T. M. Castellano, J. Shaw, L. Axell, M. E. Wood, S. Diab, C. Klein, M. Sitarik, A. M. Deffenbaugh, and S. L. Graw (2003). Identification of germline 185delAG BRCA1 mutations in non-Jewish Americans of Spanish ancestry from the San Luis Valley, Colorado. Cancer 98:597-602.Google Scholar
  25. 25.
    D. B. Berman, J. Costalas, D. C. Schultz, G. Grana, M. Daly, and A. K. Godwin (1996). A common mutation in BRCA2 that predisposes to a variety of cancers is found in both Jewish Ashkenazi and non-Jewish individuals. Cancer Res. 56:3409-3414.Google Scholar
  26. 26.
    F. H. Fodor, A. Weston, I. J. Bleiweiss, L. D. McCurdy, M. M. Walsh, P. I. Tartter, S. T. Brower, and C. M. Eng (1998). Frequency and carrier risk associated with common BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer patients. Am. J. Hum. Genet. 63:45-51.Google Scholar
  27. 27.
    M. G. FitzGerald, D. J. MacDonald, M. Krainer, I. Hoover, E. O'Neil, H. Unsal, S. Silva-Arrieto, D. M. Finkelstein, P. Beer-Romero, C. Englert, D. C. Sgroi, B. L. Smith, J. W. Younger, J. E. Garber, R. B. Duda, K. A. Mayzel, K. J. Isselbacher, S. H. Friend, and D. A. Haber (1996). Germ-line BRCA1 mutations in Jewish and non-Jewish women with early-onset breast cancer. N. Engl. J. Med. 334:143-149.Google Scholar
  28. 28.
    E. Warner, W. Foulkes, P. Goodwin, W. Meschino, J. Blondal, C. Paterson, H. Ozcelik, P. Goss, D. Allingham-Hawkins, N. Hamel, L. Di Prospero, V. Contiga, C. Serruya, M. Klein, R. Moslehi, J. Honeyford, A. Liede, G. Glendon, J. S. Brunet, and S. Narod (1999). Prevalence and pene-trance of BRCA1 and BRCA2 gene mutations in unselected Ashkenazi Jewish women with breast cancer. J. Natl. Cancer. Inst. 91:1241-1247.Google Scholar
  29. 29.
    J. M. Satagopan, K. Offit, W. Foulkes, M. E. Robson, S. Wacholder, C. M. Eng, S. E. Karp, and C. B. Begg (2001). The lifetime risks of breast cancer in Ashkenazi Jewish car-riers of BRCA1 and BRCA2 mutations. Cancer Epidemiol. Biomarkers Prev. 10:467-473.Google Scholar
  30. 30.
    S. Neuhausen, T. Gilewski, L. Norton, T. Tran, P. McGuire, J. Swensen, H. Hampel, P. Borgen, K. Brown, M. Skolnick, D. Shattuck-Eidens, S. Jhanwar, D. Goldgar, and K. Offit (1996). Recurrent BRCA2 6174delT mutations in Ashke-nazi Jewish women affected by breast cancer. Nat. Genet. 13:126-128.Google Scholar
  31. 31.
    K. Offit, T. Gilewski, P. McGuire, A. Schluger, H. Ham-pel, K. Brown, J. Swensen, S. Neuhausen, M. Skolnick, L. Norton, and D. Goldgar (1996). Germline BRCA1 185de-lAG mutations in Jewish women with breast cancer. Lancet 347:1643-1645.Google Scholar
  32. 32.
    R. Moslehi, W. Chu, B. Karlan, D. Fishman, H. Risch, A. Fields, D. Smotkin, Y. Ben David, J. Rosenblatt, D. Russo, P. Schwartz, N. Tung, E. Warner, B. Rosen, J. Friedman, J. S. Brunet, and S. A. Narod (2000). BRCA1 and BRCA2 mutation analysis of 208 Ashkenazi Jewish women with ovarian cancer. Am. J. Hum. Genet. 66:1259-1272.Google Scholar
  33. 33.
    D. Abeliovich, L. Kaduri, I. Lerer, N. Weinberg, G. Amir, M. Sagi, J. Zlotogora, N. Heching, and T. Peretz (1997). The founder mutations 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 appear in 60% of ovarian cancer and 30% of early-onset breast cancer patients among Ashkenazi women. Am. J. Hum. Genet. 60:505-514.Google Scholar
  34. 34.
    J. Gudmundsson, G. Johannesdottir, A. Arason, J. T. Bergthorsson, S. Ingvarsson, V. Egilsson, and R. B. Barkardottir (1996). Frequent occurrence of BRCA2 linkage in Icelandic breast cancer families and segregation of a common BRCA2 haplotype. Am. J. Hum. Genet. 58:749-756.Google Scholar
  35. 35.
    S. Thorlacius, G. Olafsdottir, L. Tryggvadottir, S. Neuhausen, J. G. Jonasson, S. V. Tavtigian, H. Tulinius, H. M. Ogmundsdottir, and J. E. Eyfjord (1996). A single BRCA2 mutation in male and female breast cancer families from Ice-land with varied cancer phenotypes. Nat. Genet. 13:117-119.Google Scholar
  36. 36.
    G. Johannesdottir, J. Gudmundsson, J. T. Bergthorsson, A. Arason, B. A. Agnarsson, G. Eiriksdottir, O. T. Johannsson, A. Borg, S. Ingvarsson, D. F. Easton, V. Egilsson, and R. B. Barkardottir (1996). High prevalence of the 999del5 mutation in Icelandic breast and ovarian cancer patients. Cancer Res. 56:3663-3665.Google Scholar
  37. 37.
    S. Thorlacius, S. Sigurdsson, H. Bjarnadottir, G. Olafsdottir, J. G. Jonasson, L. Tryggvadottir, H. Tulinius, and J. E. Eyfjord (1997) Study of a single BRCA2 mutation with high carrier frequency in a small population. Am. J. Hum. Genet. 60:1079-1084.Google Scholar
  38. 38.
    E. Friedman, B. R. Bar-Sade, A. Kruglikova, S. Risel, E. Levy-Lahad, D. Halle, E. Bar-On, R. Gershoni-Baruch, E. Dagan, I. Kepten, T. Peretz, I. Lerer, N. Wienberg, A. Shushan, and A. D. Abeliovich (1998). Double heterozy-gotes for the Ashkenazi founder mutations in BRCA1 and BRCA2 genes. Am. J. Hum. Genet. 63:1224-1227.Google Scholar
  39. 39.
    F. Connor, D. Bertwistle, P. J. Mee, G. M. Ross, S. Swift, E. Grigorieva, V. L. Tybulewicz, and A. Ashworth (1997). Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat. Genet. 17:423-430.Google Scholar
  40. 40.
    L. C. Gowen, B. L. Johnson, A. M. Latour, K. K. Sulik, and B. H. Koller (1996). Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat. Genet. 12:191-194.Google Scholar
  41. 41.
    M. Boyd, F. Harris, R. McFarlane, H. R. Davidson, and D. M. Black (1995). A human BRCA1 gene knockout. Nature 375:541-542.Google Scholar
  42. 42.
    B. Kuschel, S. A. Gayther, D. F. Easton, B. A. Ponder, and P. D. Pharoah (2001). Apparent human BRCA1 knockout caused by mispriming during polymerase chain reaction: implications for genetic testing. Genes Chromosomes Cancer 31:96-98.Google Scholar
  43. 43.
    N. G. Howlett, T. Taniguchi, S. Olson, B. Cox, Q. Waisfisz, C. Die-Smulders, N. Persky, M. Grompe, H. Joenje, G. Pals, H. Ikeda, E. A. Fox, and A. D. D'Andrea (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606-609.Google Scholar
  44. 44.
    A. Antoniou, P. D. Pharoah, S. Narod, H. A. Risch, J. E. Eyfjord, J. L. Hopper, N. Loman, H. Olsson, O. Johannsson, A. Borg, B. Pasini, P. Radice, S. Manoukian, D. M. Eccles, N. Tang, E. Olah, H. Anton-Culver, E. Warner, J. Lubinski, J. Gronwald, B. Gorski, H. Tulinius, S. Thorlacius, H. Eerola, H. Nevanlinna, K. Syrjakoski, O. P. Kallioniemi, D. Thompson, C. Evans, J. Peto, F. Lalloo, D. G. Evans, and D. F. Easton (2003). Average risks of breast and ovarian can-cer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: A combined analysis of 22 studies. Am. J. Hum. Genet. 72:1117-1130.Google Scholar
  45. 45.
    D. Ford, D. F. Easton, M. Stratton, S. Narod, D. Goldgar, P. Devilee, D. T. Bishop, B. Weber, G. Lenoir, J. Chang-Claude, H. Sobol, M. D. Teare, J. Struewing, A. Arason, S. Scherneck, J. Peto, T. R. Rebbeck, P. Tonin, S. Neuhausen, R. Barkardottir, J. Eyfjord, H. Lynch, B. A. Ponder, S. A. Gayther, M. Zelada-Hedman, and The Breast Cancer Linkage Consortium (1998). Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am. J. Hum. Genet. 62:676-689.Google Scholar
  46. 46.
    D. F. Easton, D. Ford, D. T. Bishop, and Breast Cancer Linkage Consortium (1995). Breast and ovarian cancer incidence in BRCA1-mutation carriers. Am. J. Hum. Genet. 56:265-271.Google Scholar
  47. 47.
    M. C. King, J. H. Marks, and J. B. Mandell (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643-646.Google Scholar
  48. 48.
    S. A. Gayther, W. Warren, S. Mazoyer, P. A. Russell, P. A. Harrington, M. Chiano, S. Seal, R. Hamoudi, E. J. van Rensburg, A. M. Dunning, R. Love, G. Evans, D. Easton, D. Clayton, M. R. Stratton, and B. A. J. Ponder (1995). Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype- phenotype correlation. Nat. Genet. 11:428-433.Google Scholar
  49. 49.
    D. Thompson, and D. Easton (2002). Breast Cancer Linkage Consortium. Variation in BRCA1 cancer risks by mutation position. Cancer Epidemiol. Biomarkers Prev. 11:329-336.Google Scholar
  50. 50.
    D. Thompson, and D. Easton (2001). Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am. J. Hum. Genet. 68:410-419.Google Scholar
  51. 51.
    S. A. Gayther, J. Mangion, P. Russell, S. Seal, R. Barfoot, B. A. Ponder, M. R. Stratton, and D. Easton (1997). Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nat. Genet. 15:103-105.Google Scholar
  52. 52.
    J. Peto, N. Collins, R. Barfoot, S. Seal, W. Warren, N. Rahman, D. F. Easton, C. Evans, J. Deacon, and M. R. Stratton (1999). Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J. Natl. Cancer Inst. 91:943–949.Google Scholar
  53. 53.
    Anglian Breast Cancer Study Group (2000). Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Br.J.Cancer 83:1301-1308.Google Scholar
  54. 54.
    M. Krainer, S. Silva-Arrieta, M. G. FitzGerald, A. Shimada, C. Ishioka, R. Kanamaru, D. J. MacDonald, H. Unsal, D. M. Finkelstein, A. Bowcock, K. J. Isselbacher, and D. A. Haber (1997). Differential contributions of BRCA1 and BRCA2 to early-onset breast cancer. N. Engl. J. Med. 336:1416-1421.Google Scholar
  55. 55.
    D. M. Eccles, P. Englefield, M. A. Soulby, and I. G. Campbell (1998). BRCA1 mutations in southern England. Br. J. Cancer 77:2199-2203.Google Scholar
  56. 56.
    K. E. Malone, J. R. Daling, J. D. Thompson, C. A. O'Brien, L. V. Francisco, and E. A. Ostrander (1998). BRCA1 muta-tions and breast cancer in the general population: Analyses in women before age 35 years and in women before age 45 years with first-degree family history. JAMA 279:922-929.Google Scholar
  57. 57.
    B. Newman, H. Mu, L. M. Butler, R. C. Millikan, P. G. Moorman, and M. C. King (1998). Frequency of breast cancer attributable to BRCA1 in a population-based series of American women. JAMA 279:915-921.Google Scholar
  58. 58.
    J. L. Hopper, M. C. Southey, G. S. Dite, D. J. Jolley, G. G. Giles, M. R. McCredie, D. F. Easton, D. J. Venter, and Australian Breast Cancer Family Study (1999). Population-based estimate of the average age-specific cumulative risk of breast cancer for a defined set of protein-truncating muta-tions in BRCA1 and BRCA2. Cancer Epidemiol. Biomarkers Prev. 8:741-747.Google Scholar
  59. 59.
    N. Loman, O. Johannsson, U. Kristoffersson, H. Olsson, and A. Borg (2001). Family history of breast and ovarian cancers and BRCA1 and BRCA2 mutations in a population-based series of early-onset breast cancer. J. Natl. Cancer Inst. 93:1215-1223.Google Scholar
  60. 60.
    D. Ford, D. F. Easton, and J. Peto (1995). Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am. J. Hum. Genet. 57:1457-1462.Google Scholar
  61. 61.
    A. C. Antoniou, P. D. Pharoah, G. McMullan, N. E. Day, M. R. Stratton, J. Peto, B. J. Ponder, and D. F. Easton (2002). A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br. J. Cancer 86:76-83.Google Scholar
  62. 62.
    A. C. Antoniou, S. A. Gayther, J. F. Stratton, B. A. Ponder, and D. F. Easton (2000). Risk models for familial ovarian and breast cancer. Genet. Epidemiol. 18:173-190.Google Scholar
  63. 63.
    F. J. Couch, L. M. Farid, M. L. Deshano, S. V. Tavtigian, K. Calzone, L. Campeau, Y. Peng, B. Bogden, Q. Chen, S. Neuhausen, D. Shattuck-Eidens, A. K. Godwin, M. Daly, D. M. Radford, S. Sedlacek, J. Rommens, J. Simard, J. Garber, S. Merajver, and B. L. Weber (1996). BRCA2 germline mutations in male breast cancer cases and breast cancer families. Nat. Genet. 13:123-125.Google Scholar
  64. 64.
    L. S. Friedman, S. A. Gayther, T. Kurosaki, D. Gordon, B. Noble, G. Casey, B. A. Ponder, and H. Anton-Culver (1997). Mutation analysis of BRCA1 and BRCA2 in a male breast cancer population. Am. J. Hum. Genet. 60:313- 319.Google Scholar
  65. 65.
    K. Haraldsson, N. Loman, Q. X. Zhang, O. Johannsson, H. Olsson, and A. Borg (1998). BRCA2 germ-line mutations are frequent in male breast cancer patients without a family history of the disease. Cancer Res. 58:1367-1371.Google Scholar
  66. 66.
    E. Kwiatkowska, M. Teresiak, K. M. Lamperska, A. Karczewska, D. Breborowicz, M. Stawicka, D. Godlewski, W. J. Krzyzosiak, and A. Mackiewicz (2001). BRCA2 germline mutations in male breast cancer patients in the Polish population. Hum. Mutat. 17:73.Google Scholar
  67. 67.
    E. Mavraki, I. C. Gray, D. T. Bishop, and N. K. Spurr (1997). Germline BRCA2 mutations in men with breast cancer. Br. J. Cancer 76:1428-1431.Google Scholar
  68. 68.
    S. R. Lakhani, J. Jacquemier, J. P. Sloane, B. A. Gusterson, T. J. Anderson, M. J. van de Vijver, L. M. Farid, D. Venter, A. Antoniou, A. Storfer-Isser, E. Smyth, C. M. Steel, N. Haites, R. J. Scott, D. Goldgar, S. Neuhausen, P. A. Daly, W. Ormiston, R. McManus, S. Scherneck, B. A. Ponder, D. Ford, J. Peto, D. Stoppa-Lyonnet, Y. J. Bignon, J. P. Struewing, N. K. Spurr, D. T. Bishop, J. G. M. Klijn, P. Devilee, C. Cornelisse, C. Lasset, G. Lenoir, R. B. Barkardottir, V. Egilsson, U. Hamann, J. Chang-Claude, H. Sobol, B. Weber, M. R. Stratton, and D. F. Easton (1998). Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J. Natl. Cancer Inst. 90:1138-1145.Google Scholar
  69. 69.
    Breast Cancer Linkage Consortium (1997). Pathology of familial breast cancer: Differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Lancet 349:1505-1510.Google Scholar
  70. 70.
    J. N. Marcus, P. Watson, D. L. Page, S. A. Narod, G. M. Lenoir, P. Tonin, L. Linder-Stephenson, G. Salerno, T. A. Conway, and H. T. Lynch (1996). Hereditary breast cancer: Pathobiology, prognosis, and BRCA1 and BRCA2 gene linkage. Cancer 77:697-709.Google Scholar
  71. 71.
    O. T. Johannsson, I. Idvall, C. Anderson, A. Borg, R. B. Barkardottir, V. Egilsson, and H. Olsson (1997). Tumour biological features of BRCA1-induced breast and ovarian cancer. Eur. J. Cancer 33:362-371.Google Scholar
  72. 72.
    U. Hamann, and H. P. Sinn (2000). Survival and tumor characteristics of German hereditary breast cancer patients. Breast Cancer Res. Treat. 59:185-192.Google Scholar
  73. 73.
    D. Stoppa-Lyonnet, Y. Ansquer, H. Dreyfus, C. Gautier, M. Gauthier-Villars, E. Bourstyn, K. B. Clough, H. Magdelenat, P. Pouillart, A. Vincent-Salomon, A. Fourquet, and B. Asselain (2000). Familial invasive breast cancers: Worse outcome related to BRCA1 mutations. J. Clin. Oncol. 18:4053-4059.Google Scholar
  74. 74.
    D. Turchetti, L. Cortesi, M. Federico, C. Bertoni, L. Mangone, S. Ferrari, and V. Silingardi (2000). BRCA1 mutations and clinicopathological features in a sample of Italian women with early-onset breast cancer. Eur. J. Cancer 36:2083-2089.Google Scholar
  75. 75.
    M. Robson, T. Gilewski, B. Haas, D. Levin, P. Borgen, P. Rajan, Y. Hirschaut, P. Pressman, P. P. Rosen, M. L. Lesser, L. Norton, and K. Offit (1998). BRCA-associated breast cancer in young women. J. Clin. Oncol. 16:1642-1649.Google Scholar
  76. 76.
    K. A. Phillips, K. Nichol, H. Ozcelik, J. Knight, S. J. Done, P. J. Goodwin, and I. L. Andrulis (1999). Frequency of p53 mu-tations in breast carcinomas from Ashkenazi Jewish carriers of BRCA1 mutations. J. Natl. Cancer Inst. 91:469-473.Google Scholar
  77. 77.
    S. R. Lakhani, M. J. van de Vijver, J. Jacquemier, T. J. Anderson, P. P. Osin, L. McGuffog, and D. F. Easton (2002). The pathology of familial breast cancer: Predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J. Clin. Oncol. 20:2310- 2318.Google Scholar
  78. 78.
    S. A. Narod, J. S. Brunet, P. Ghadirian, M. Robson, K. Heimdal, S. L. Neuhausen, D. Stoppa-Lyonnet, C. Lerman, B. Pasini, R. P. de los, B. Weber, H. Lynch, and Hereditary Breast Cancer Clinical Study Group (2000). Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: A case-control study. Lancet 356:1876-1881.Google Scholar
  79. 79.
    C. M. Perou, T. Sorlie, M. B. Eisen, van de RM, S. S. Jeffrey, C. A. Rees, J. R. Pollack, D. T. Ross, H. Johnsen, L. A. Akslen, O. Fluge, A. Pergamenschikov, C. Williams, S. X. Zhu, P. E. Lonning, A. L. Borresen-Dale, P. O. Brown, and D. Botstein (2000). Molecular portraits of human breast tumours. Nature 406:747-752.Google Scholar
  80. 80.
    W. D. Foulkes, I. M. Stefansson, P. O. Chappuis, L. R. Begin, J. R. Goffin, N. Wong, M. Trudel, and L. A. Akslen (2003). Germline BRCA1 mutations and a basal epithelial pheno-type in breast cancer. J. Natl. Cancer Inst. 95:1482-1485.Google Scholar
  81. 81.
    H. Eerola, P. Vahteristo, L. Sarantaus, P. Kyyronen, S. Pyrhonen, C. Blomqvist, E. Pukkala, H. Nevanlinna, and R. Sankila (2001). Survival of breast cancer patients in BRCA1, BRCA2, and non-BRCA1/2 breast cancer families: A rela-tive survival analysis from Finland. Int. J. Cancer 93:368-372.Google Scholar
  82. 82.
    A. A. Jazaeri, C. J. Yee, C. Sotiriou, K. R. Brantley, J. Boyd, and E. T. Liu (2002). Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J. Natl. Cancer Inst. 94:990-1000.Google Scholar
  83. 83.
    D. Thompson, and D. F. Easton (2002). Cancer incidence in BRCA1 mutation carriers. J. Natl. Cancer Inst. 94:1358- 1365.Google Scholar
  84. 84.
    Breast Cancer Linkage Consortium (1999). Cancer risks in BRCA2 mutation carriers. J. Natl. Cancer Inst. 91:1310-1316.Google Scholar
  85. 85.
    S. Sigurdsson, S. Thorlacius, J. Tomasson, L. Tryggvadottir, K. Benediktsdottir, J. E. Eyfjord, and E. Jonsson (1997). BRCA2 mutation in Icelandic prostate cancer patients. J. Mol. Med. 75:758-761.Google Scholar
  86. 86.
    S. M. Edwards, Z. Kote-Jarai, J. Meitz, R. Hamoudi, Q. Hope, P. Osin, R. Jackson, C. Southgate, R. Singh, A. Falconer, D. P. Dearnaley, A. Ardern-Jones, A. Murkin, A. Dowe, J. Kelly, S. Williams, R. Oram, M. Stevens, D. M. Teare, B. A. Ponder, S. A. Gayther, D. F. Easton, and R. A. Eeles (2003). Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am. J. Hum. Genet. 72:1-12.Google Scholar
  87. 87.
    S. A. Gayther, K. A. de Foy, P. Harrington, P. Pharoah, W. D. Dunsmuir, S. M. Edwards, C. Gillett, A. Ardern-Jones, D. P. Dearnaley, D. F. Easton, D. Ford, R. J. Shearer, R. S. Kirby, A. L. Dowe, J. Kelly, M. R. Stratton, B. A. Ponder, D. Barnes, R. A. Eeles, and The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators (2000). The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. Cancer Res. 60:4513-4518.Google Scholar
  88. 88.
    A. Vazina, J. Baniel, Y. Yaacobi, A. Shtriker, D. Engelstein, I. Leibovitz, M. Zehavi, A. A. Sidi, Y. Ramon, T. Tischler, P. M. Livne, and E. Friedman (2000). The rate of the founder Jewish mutations in BRCA1 and BRCA2 in prostate cancer patients in Israel. Br. J. Cancer 83:463-466.Google Scholar
  89. 89.
    F. Clavel-Chapelon, E3N-EPIC Group (2002). Differential effects of reproductive factors on the risk of pre-and post-menopausal breast cancer. Results from a large cohort of French women. Br. J. Cancer 86:723-727.Google Scholar
  90. 90.
    A. S. Whittemore, R. Harris, and J. Itnyre (1992). Characteristics relating to ovarian cancer risk: Collaborative analysis of 12 US case-control studies. II: Invasive epithelial ovarian cancers in white women. Collaborative Ovarian Cancer Group. Am. J. Epidemiol. 136:1184-1203.Google Scholar
  91. 91.
    L. Tryggvadottir, E. J. Olafsdottir, S. Gudlaugsdottir, S. Thorlacius, J. G. Jonasson, H. Tulinius, and J. E. Eyfjord (2003). BRCA2 mutation carriers, reproductive factors and breast cancer risk. Breast Cancer Res. 5:R121-R128.Google Scholar
  92. 92.
    B. Modan, P. Hartge, G. Hirsh-Yechezkel, A. Chetrit, F. Lubin, U. Beller, G. Ben Baruch, A. Fishman, J. Menczer, S. M. Ebbers, M. A. Tucker, S. Wacholder, J. P. Struewing, E. Friedman, and B. Piura (2001). Parity, oral contraceptives, and the risk of ovarian cancer among carriers and noncar-riers of a BRCA1 or BRCA2 mutation. N. Engl. J. Med. 345:235-240.Google Scholar
  93. 93.
    T. R. Rebbeck, Y. Wang, P. W. Kantoff, K. Krithivas, S. L. Neuhausen, A. K. Godwin, M. B. Daly, S. A. Narod, J. S. Brunet, D. Vesprini, J. E. Garber, H. T. Lynch, B. L. Weber, and M. Brown (2001). Modification of BRCA1-and BRCA2-associated breast cancer risk by AIB1 genotype and reproductive history. Cancer Res. 61:5420-5424.Google Scholar
  94. 94.
    S. A. Narod, M. P. Dube, J. Klijn, J. Lubinski, H. T. Lynch, P. Ghadirian, D. Provencher, K. Heimdal, P. Moller, M. Robson, K. Offit, C. Isaacs, B. Weber, E. Friedman, R. Gershoni-Baruch, G. Rennert, B. Pasini, T. Wagner, M. Daly, J. E. Garber, S. L. Neuhausen, P. Ainsworth, H. Olsson, G. Evans, M. Osborne, F. Couch, W. D. Foulkes, E. Warner, C. Kim-Sing, O. Olopade, N. Tung, H. M. Saal, J. Weitzel, S. Merajver, M. Gauthier-Villars, H. Jernstrom, P. Sun, and J. S. Brunet (2002). Oral contraceptives and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 94:1773-1779.Google Scholar
  95. 95.
    T. R. Rebbeck, A. M. Levin, A. Eisen, C. Snyder, P. Watson, L. Cannon-Albright, C. Isaacs, O. Olopade, J. E. Garber, A. K. Godwin, M. B. Daly, S. A. Narod, S. L. Neuhausen, H. T. Lynch, and B. L. Weber (1999). Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J. Natl. Cancer Inst. 91:1475-1479.Google Scholar
  96. 96.
    T. R. Rebbeck, P. W. Kantoff, K. Krithivas, S. Neuhausen, M. A. Blackwood, A. K. Godwin, M. B. Daly, S. A. Narod, J. E. Garber, H. T. Lynch, B. L. Weber, and M. Brown (1999). Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. Am. J. Hum. Genet. 64:1371-1377.Google Scholar
  97. 97.
    L. Kadouri, D. F. Easton, S. Edwards, A. Hubert, Z. Kote-Jarai, B. Glaser, F. Durocher, D. Abeliovich, T. Peretz, and R. A. Eeles (2001). CAG and GGC repeat polymorphisms in the androgen receptor gene and breast cancer susceptibility in BRCA1/2 carriers and noncarriers. Br. J. Cancer 85:36-40.Google Scholar
  98. 98.
    L. Kadouri, Z. Kote-Jarai, D. F. Easton, A. Hubert, R. Hamoudi, B. Glaser, D. Abeliovich, T. Peretz, and R. A. Eeles (2004). Polyglutamine repeat length in the AIB1 gene modifies breast cancer susceptibility in BRCA1 carriers. Int. J. Cancer 108:399-403.Google Scholar
  99. 99.
    M. Redston, K. L. Nathanson, Z. Q. Yuan, S. L. Neuhausen, J. Satagopan, N. Wong, D. Yang, D. Nafa, J. Abrahamson, H. Ozcelik, D. Antin-Ozerkis, I. Andrulis, M. Daly, L. Pinsky, D. Schrag, S. Gallinger, M. Kaback, M. C. King, T. Woodage, L. C. Brody, A. Godwin, E. Warner, B. Weber, W. Foulkes, and K. Offit (1998). The APCI1307K allele and breast cancer risk. Nat. Genet. 20:13-14.Google Scholar
  100. 100.
    E. Levy-Lahad, A. Lahad, S. Eisenberg, E. Dagan, T. Paperna, L. Kasinetz, R. Catane, B. Kaufman, U. Beller, P. Renbaum, and R. Gershoni-Baruch (2001). A single nu-cleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc. Natl. Acad. Sci. U. S. A. 98:3232-3236.Google Scholar
  101. 101.
    W. W. Wang, A. B. Spurdle, P. Kolachana, B. Bove, B. Modan, S. M. Ebbers, G. Suthers, M. A. Tucker, D. J. Kaufman, M. M. Doody, R. E. Tarone, M. Daly, H. Levavi, H. Pierce, A. Chetrit, G. H. Yechezkel, G. Chenevix-Trench, K. Offit, A. K. Godwin, and J. P. Struewing (2001). A single nucleotide polymorphism in the 5untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol. Biomarkers Prev. 10:955- 960.Google Scholar
  102. 102.
    A. Jakubowska, S. A. Narod, D. E. Goldgar, M. Mierzejewski, B. Masojc, K. Nej, J. Huzarska, T. Byrski, B. Gorski, and J. Lubinski (2003). Breast cancer risk reduction associated with the RAD51 polymorphism among carriers of the BRCA1 5382insC mutation in Poland. Cancer Epidemiol. Biomarkers Prev. 12:457-459.Google Scholar
  103. 103.
    D. W. Bell, J. M. Varley, T. E. Szydlo, D. H. Kang, D. C. Wahrer, K. E. Shannon, M. Lubratovich, S. J. Verselis, K. J. Isselbacher, J. F. Fraumeni, J. M. Birch, F. P. Li, J. E. Garber, and D. A. Haber (1999). Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2528-2531.Google Scholar
  104. 104.
    P. Vahteristo, A. Tamminen, P. Karvinen, H. Eerola, C. Eklund, L. A. Aaltonen, C. Blomqvist, K. Aittomaki, and H. Nevanlinna (2001). p53, CHK2, and CHK1 genes in Finnish families with Li-Fraumeni syndrome: Further evidence of CHK2 in inherited cancer predisposition. Cancer Res. 61:5718-5722.Google Scholar
  105. 105.
    H. Meijers-Heijboer. (2002). CHK2 1100delC is a low pen-etrance familial breast cancer susceptibility allele that does not elevate breast cancer in BRCA1/2 mutation carriers. Nat. Genet. 31:55-59.Google Scholar
  106. 106.
    P. Vahteristo, J. Bartkova, H. Eerola, K. Syrjakoski, S. Ojala, O. Kilpivaara, A. Tamminen, J. Kononen, K. Aittomaki, P. Heikkila, K. Holli, C. Blomqvist, J. Bartek, O. P. Kallioniemi, and H. Nevanlinna (2002). A CHEK2 genetic variant con-tributing to a substantial fraction of familial breast cancer. Am. J. Hum. Genet. 71:432-438.Google Scholar
  107. 107.
    CHEK2 Breast Cancer Case-Control Consortium (2004). CHEK2 1100delC and susceptibility to breast cancer: A collaborative analysis involving 10,860 breast cancer cases and 9065 controls from 10 studies. Am. J. Hum. Genet. 74:1175-1182.Google Scholar
  108. 108.
    B. Kuschel, A. Auranen, C. S. Gregory, N. E. Day, D. F. Easton, B. A. Ponder, A. M. Dunning, and P. D. Pharoah (2003). Common polymorphisms in checkpoint kinase 2 are not associated with breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 12:809-812.Google Scholar
  109. 109.
    M. Schutte, S. Seal, R. Barfoot, H. Meijers-Heijboer, M. Wasielewski, D. G. Evans, D. Eccles, C. Meijers, F. Lohman, J. Klijn, O. A. van den, P. A. Futreal, K. L. Nathanson, B. L. Weber, D. F. Easton, M. R. Stratton, and N. Rahman (2003). Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility. Am. J. Hum. Genet. 72:1023-1028.Google Scholar
  110. 110.
    D. F. Easton (1994). Cancer risks in A-T heterozygotes. Int. J. Radiat Biol. 66:S177-S182.Google Scholar
  111. 111.
    M. G. FitzGerald, J. M. Bean, S. R. Hegde, H. Unsal, D. J. MacDonald, D. P. Harkin, D. M. Finkelstein, K. J. Isselbacher, and D. A. Haber (1997). Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat. Genet. 15:307-310.Google Scholar
  112. 112.
    T. Stankovic, A. M. Kidd, A. Sutcliffe, G. M. McGuire, P. Robinson, P. Weber, T. Bedenham, A. R. Bradwell, D. F. Easton, G. G. Lennox, N. Haites, P. J. Byrd, and A. M. Taylor (1998). ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: Expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am. J. Hum. Genet. 62:334-345.Google Scholar
  113. 113.
    Y. R. Thorstenson, A. Roxas, R. Kroiss, M. A. Jenkins, K. M. Yu, T. Bachrich, D. Muhr, T. L. Wayne, G. Chu, R. W. Davis, T. M. Wagner, and P. J. Oefner (2003). Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res. 63:3325-3333.Google Scholar
  114. 114.
    G. Chenevix-Trench, A. B. Spurdle, M. Gatei, H. Kelly, A. Marsh, X. Chen, K. Donn, M. Cummings, D. Nyholt, M. A. Jenkins, C. Scott, G. M. Pupo, T. Dork, R. Bendix, J. Kirk, K. Tucker, M. R. McCredie, J. L. Hopper, J. Sambrook, G. J. Mann, and K. K. Khanna (2002). Dominant negative ATM mutations in breast cancer families. J. Natl. Cancer Inst. 94:205-215.Google Scholar
  115. 115.
    C. I. Szabo, M. Schutte, A. Broeks, J. Houwing-Duistermaat, Y. R. Thorstenson, F. Durocher, R. A. Oldenburg, M. Wasielewski, F. Odefrey, D. Thompson, A. N. floore, J. Kraan, J. Klijn, A. M. van den Ouweland, the BRCA-X Consortium, CFRBCS, INHERIT BRCAs, T. M. Wagner, P. Devilee, J. Simard, L. J. van 't Veer, D. Goldgar, and H. Meijers-Heijboer (2004). Are ATM mutations 7271T >G and IVS10-6T >G really high-risk breast cancer-susceptibility alleles? Cancer Res. 64:840-843.Google Scholar
  116. 116.
    A. M. Dunning, M. Dowsett, C. S. Healey, L. Tee, R. N. Luben, E. Folkerd, K. L. Novik, L. Kelemen, S. Ogata, P. D. Pharoah, D. F. Easton, N. E. Day, and B. A. Ponder (2004). Polymorphisms associated with circulating sex hor-mone levels in postmenopausal women. J. Natl. Cancer Inst. 96(12):936-945.Google Scholar
  117. 117.
    D. F. Easton (1999). How many more breast cancer pre-disposition genes are there? Breast Cancer Res. 1:14- 17.Google Scholar
  118. 118.
    A. C. Antoniou, P. D. Pharoah, G. McMullan, N. E. Day, B. A. Ponder, and D. Easton (2001). Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet. Epidemiol. 21:1-18.Google Scholar
  119. 119.
    P. Huusko, S. H. Juo, E. Gillanders, L. Sarantaus, T. Kainu, P. Vahteristo, M. Allinen, M. Jones, K. Rapakko, H. Eerola, C. Markey, P. Vehmanen, D. Gildea, D. Freas-Lutz, C. Blomqvist, J. Leisti, G. Blanco, U. Puistola, J. Trent, J. Bailey-Wilson, R. Winqvist, H. Nevanlinna, and O. P. Kallioniemi (2004). Genome-wide scanning for linkage in Finnish breast cancer families. Eur. J. Hum. Genet. 12:98- 104.Google Scholar
  120. 120.
    T. Kainu, S. H. Juo, R. Desper, A. A. Schaffer, E. Gillanders, E. Rozenblum, D. Freas-Lutz, D. Weaver, D. Stephan, J. Bailey-Wilson, O. P. Kallioniemi, M. Tirkkonen, K. Syrjakoski, T. Kuukasjarvi, P. Koivisto, R. Karhu, K. Holli, A. Arason, G. Johannesdottir, J. T. Bergthorsson, H. Johannsdottir, V. Egilsson, R. B. Barkardottir, O. Johannsson, K. Haraldsson, T. Sandberg, E. Holmberg, H. Gronberg, H. Olsson, A. Borg, P. Vehmanen, H. Eerola, P. Heikkila, S. Pyrhonen, and H. Nevanlinna (2000). Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc. Natl. Acad. Sci. U. S. A. 97:9603-9608.Google Scholar
  121. 121.
    N. Rahman, M. D. Teare, S. Seal, H. Renard, J. Mangion, C. Cour, D. Thompson, Y. Shugart, D. Eccles, P. Devilee, H. Meijers, K. L. Nathanson, S. L. Neuhausen, B. Weber, J. Chang-Claude, D. F. Easton, D. Goldgar, and M. R. Stratton (2000). Absence of evidence for a familial breast cancer susceptibility gene at chromosome 8p12-p22. Oncogene 19:4170-4173.Google Scholar
  122. 122.
    S. Seitz, K. Rohde, E. Bender, A. Nothnagel, K. Kolble, P. M. Schlag, and S. Scherneck (1997). Strong indication for a breast cancer susceptibility gene on chromosome 8p12-p22: Linkage analysis in German breast cancer families. Oncogene 14:741-743.Google Scholar
  123. 123.
    D. Thompson, C. I. Szabo, J. Mangion, R. A. Oldenburg, F. Odefrey, S. Seal, R. Barfoot, K. Kroeze-Jansema, D. Teare, N. Rahman, H. Renard, C. KConFab, G. Mann, J. L. Hopper, S. S. Buys, I. L. Andrulis, R. Senie, M. B. Daly, D. West, E. A. Ostrander, K. Offit, T. Peretz, A. Osorio, J. Benitez, K. L. Nathanson, O. M. Sinilnikova, E. Olah, Y. J. Bignon, P. Ruiz, M. D. Badzioch, H. F. Vasen, A. P. Futreal, C. M. Phelan, S. A. Narod, H. T. Lynch, B. A. Ponder, R. A. Eeles, H. Meijers-Heijboer, D. Stoppa-Lyonnet, F. J. Couch, D. M. Eccles, D. G. Evans, J. Chang-Claude, G. Lenoir, B. L. Weber, P. Devilee, D. F. Easton, D. E. Goldgar, and M. R. Stratton (2002). Evaluation of linkage of breast cancer to the putative BRCA3 locus on chromosome 13q21 in 128 multiple case families from the Breast Cancer Linkage Consortium. Proc. Natl. Acad. Sci. U. S. A. 99:827-831.Google Scholar
  124. 124.
    A. M. Dunning, C. S. Healey, P. D. Pharoah, M. D. Teare, B. A. Ponder, and D. F. Easton (1999). A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 8:843-854.Google Scholar
  125. 125.
    H. Meijers-Heijboer, J. Wijnen, H. Vasen, M. Wasielewski, A. Wagner, A. Hollestelle, F. Elstrodt, B. R. van den, A. de Snoo, G. T. Fat, C. Brekelmans, S. Jagmohan, P. Franken, P. Verkuijlen, O. A. van den, P. Chapman, C. Tops, G. Moslein, J. Burn, H. Lynch, J. Klijn, R. Fodde, and M. Schutte (2003). The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am. J. Hum. Genet. 72:1308-1314.Google Scholar
  126. 126.
    F. Lalloo, J. Varley, D. Ellis, A. Moran, L. O'Dair, P. Pharoah, and D. G. Evans (2003). Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet 361:1101-1102.Google Scholar
  127. 127.
    A. Chompret, L. Brugieres, M. Ronsin, M. Gardes, F. Dessarps-Freichey, A. Abel, D. Hua, L. Ligot, M. G. Dondon, B. Bressac-de Paillerets, T. Frebourg, J. Lemerle, C. Bonaiti-Pellie, and J. Feunteun (2000). P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br. J. Cancer 82:1932-1937.Google Scholar
  128. 128.
    S. Ball, M. Arolker, and A. D. Purushotham (2001). Breast cancer, Cowden disease and PTEN-MATCHS syndrome. Eur. J. Surg. Oncol. 27:604-606.Google Scholar
  129. 129.
    D. M. Parkin, S. L. Whelan, J. Ferlay, L. Teppo, and D. B. Thomas (2002). Cancer Incidence in Five Continents. IARC, Lyon, France.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Deborah Thompson
    • 1
  • Douglas Easton
    • 1
  1. 1.Cancer Research U.K. Genetic Epidemiology UnitUniversity of CambridgeCambridgeU.K

Personalised recommendations