Journal of Mammary Gland Biology and Neoplasia

, Volume 9, Issue 2, pp 119–131

Wnt Proteins in Mammary Development and Cancer

Article

Abstract

Secreted proteins of the Wnt family play widespread roles in the regulation of embryonic development, and aberrant activation of the canonical Wnt/β-catenin pathway is one of the most frequent signaling abnormalities known in human cancer. While the consequences of Wnt signaling in development are diverse at the cellular level, they are often concerned with cell fate determination. Recent data also indicate that Wnt proteins influence the self-renewal of stem cells in certain tissues. In the mammary gland, Wnt signals are strongly implicated in initial development of the mammary rudiments, and in the ductal branching and alveolar morphogenesis that occurs during pregnancy. Transgenic expression of Wnt1 or Wnt10b in the mouse mammary gland leads to lobuloalveolar hyperplasia with a major risk of progression to carcinoma. Recent evidence suggests that this phenotype is associated with expansion of a multipotent progenitor cell population. In human breast cancer, evidence of β-catenin accumulation implies that the canonical Wnt signaling pathway is active in over 50% of carcinomas. However, specific mutations that might account for this activation of signaling have not yet been identified.

Wnt β-catenin mammary gland cancer development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Rijsewijk F, Schuerman M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 1987;50:649-657.Google Scholar
  2. 2.
    Nusse R, Varmus HE. Wnt genes. Cell 1992;69:1073-1087.PubMedGoogle Scholar
  3. 3.
    Miller JR. The Wnts. Genome Biol 2002;3(1):reviews 3001.1-3001.15.Google Scholar
  4. 4.
    Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11:3286-3305.Google Scholar
  5. 5.
    Polakis P. Wnt signaling and cancer. Genes Dev 2000;14(15):1837-51.PubMedGoogle Scholar
  6. 6.
    Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 2001;11(5):547-53.PubMedGoogle Scholar
  7. 7.
    Strutt D.Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 2003;130(19):4501-13.PubMedGoogle Scholar
  8. 8.
    Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003;5(3):367-77.PubMedGoogle Scholar
  9. 9.
    Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000;16(7):279-83.PubMedGoogle Scholar
  10. 10.
    Yamanaka H, Moriguchi T, Masuyama N, Kusakabe M, Hanafusa H, Takada R, et al. JNK functions in the noncanonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep 2002;3(1):69-75.PubMedGoogle Scholar
  11. 11.
    Strutt D, Johnson R, Cooper K, Bray S. Asymmetric localization of frizzled and the determination of notch-dependent cell fate in the Drosophila eye. Curr Biol 2002;12:813-824.PubMedGoogle Scholar
  12. 12.
    Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kuhl M, Moon RT. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 2003;161(4):769-77.PubMedGoogle Scholar
  13. 13.
    Payre F, Vincent A, Carreno S. ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. Nature 1999;400(6741):271-5.PubMedGoogle Scholar
  14. 14.
    Kim J, Sebring A, Esch JJ, Kraus ME, Vorwerk K, Magee J, et al. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 1996;382(6587):133-8.PubMedGoogle Scholar
  15. 15.
    Klein T, Martinez Arias A. Different spatial and temporal interactions between Notch, wingless and vestigial specify proximal and distal elements of the wing in Drosophila. Developmental Biology 1998;194:196-212.PubMedGoogle Scholar
  16. 16.
    Dubois L, Lecourtois M, Alexandre C, Hirst E, Vincent JP. Regulated endocytic routing modulates wingless signaling in Drosophila embryos. Cell 2001;105(5):613-24.PubMedGoogle Scholar
  17. 17.
    Strigini M, Cohen SM. Wingless gradient formation in the Drosophila wing. Curr Biol 2000;10(6):293-300.PubMedGoogle Scholar
  18. 18.
    Neumann C, Cohen S. Morphogens and pattern formation. Bioessays 1997;19(8):721-9.PubMedGoogle Scholar
  19. 19.
    Martinez Arias A. Wnts as morphogens? The view from the wing of Drosophila. Nat Rev Mol Cell Biol 2003;4(4):321-5.PubMedGoogle Scholar
  20. 20.
    Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Ann Rev Cell Dev Biol 1998;14:59-88.Google Scholar
  21. 21.
    Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, et al. Inhibition of adipogenesis by Wnt signaling. Science 2000;289(5481):950-3.PubMedGoogle Scholar
  22. 22.
    Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, et al. Regulation of Wnt signaling during adipogenesis. J Biol Chem 2002;277(34):30998-11004.PubMedGoogle Scholar
  23. 23.
    Cossu G, Borello U. Wnt signaling and the activation of myogenesis in mammals. Embo J 1999;18(24):6867-72.PubMedGoogle Scholar
  24. 24.
    Petropoulos H, Skerjanc IS. Beta-catenin is essential and sufficient for skeletal myogenesis in P19 cells. J Biol Chem 2002;277(18):15393-9.PubMedGoogle Scholar
  25. 25.
    Pandur P, Lasche M, Eisenberg LM, Kuhl M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 2002;418(6898):636-41.PubMedGoogle Scholar
  26. 26.
    Nakamura T, Sano M, Songyang Z, Schneider MD. A Wntand beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A 2003;100(10):5834-9.PubMedGoogle Scholar
  27. 27.
    Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003;423(6938):448-52.PubMedGoogle Scholar
  28. 28.
    Reya T. Regulation of hematopoietic stem cell self-renewal. Recent Prog Horm Res 2003;58:283-95.PubMedGoogle Scholar
  29. 29.
    Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004;10(1):55-63.PubMedGoogle Scholar
  30. 30.
    Kubo F, Takeichi M, Nakagawa S. Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 2003;130(3):587-98.PubMedGoogle Scholar
  31. 31.
    Zhu AJ, Watt FM. beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intracellular adhesion. Development 1999;126:2285-98.PubMedGoogle Scholar
  32. 32.
    Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 2003;100(26):15853-8.PubMedGoogle Scholar
  33. 33.
    Liu BY, McDermott SP, Khwaja SS, Alexander CM. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A 2004;101(12):4158-63.PubMedGoogle Scholar
  34. 34.
    Lako M, Lindsay S, Lincoln J, Cairns PM, Armstrong L, Hole N. Characterisation of Wnt gene expression during the differentiation of murine embryonic stem cells in vitro: role of Wnt3 in enhancing haematopoietic differentiation. Mech Dev 2001;103(1-2):49-59.PubMedGoogle Scholar
  35. 35.
    Lee HY, Kleber M, Hari L, Brault V, Suter U, Taketo MM, et al. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 2004;303(5660):1020-3.PubMedGoogle Scholar
  36. 36.
    Noordermeer J, Klingensmith J, PerrimonN, Nusse R. dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature 1994;367(6458):80-3.PubMedGoogle Scholar
  37. 37.
    Nusse R, Samos CH, Brink M, Willert K, Cadigan KM, Wodarz A, et al. Cell culture and whole animal approaches to understanding signaling by Wnt proteins in Drosophila. Cold Spring Harb Symp Quant Biol 1997;62:185-90.PubMedGoogle Scholar
  38. 38.
    Lawrence PA, Casal J, Struhl G. Towards a model of the organisation of planar polarity and pattern in the Drosophila abdomen. Development 2002;129(11):2749-60.PubMedGoogle Scholar
  39. 39.
    Mlodzik M. Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet 2002;18(11):564-71.PubMedGoogle Scholar
  40. 40.
    Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 2000;405(6782):76-81.PubMedGoogle Scholar
  41. 41.
    Kilian B, Mansukoski H, Barbosa FC, Ulrich F, Tada M, Heisenberg CP. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev 2003;120(4):467-76.PubMedGoogle Scholar
  42. 42.
    Copp AJ, Greene ND, Murdoch JN. Dishevelled: linking convergent extension with neural tube closure. Trends Neurosci 2003;26(9):453-5.PubMedGoogle Scholar
  43. 43.
    Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 2003;13(13):1129-33.PubMedGoogle Scholar
  44. 44.
    Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. Identification ofVangl2 and Scrb1 as planar polarity genes inmammals. Nature 2003;423(6936):173-7.PubMedGoogle Scholar
  45. 45.
    Park FD, Priess JR. Establishment of POP-1 asymmetry in early C. elegans embryos. Development 2003;130(15):3547-56.PubMedGoogle Scholar
  46. 46.
    Korswagen HC. Canonical and non-canonical Wnt signaling pathways in Caenorhabditis elegans: variations on a common signaling theme. Bioessays 2002;24(9):801-10.PubMedGoogle Scholar
  47. 47.
    Schlesinger A, Shelton CA, Maloof JN, Meneghini M, Bowerman B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev 1999;13(15):2028-38.PubMedGoogle Scholar
  48. 48.
    Lu B, Roegiers F, Jan LY, Jan YN. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 2001;409(6819):522-5.PubMedGoogle Scholar
  49. 49.
    Yamashita YM, Jones DL, Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 2003;301(5639):1547-50.PubMedGoogle Scholar
  50. 50.
    Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, et al. Depletion of epithelial stem-cell 130 Brennan and Brown compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998;19(4):379-83.PubMedGoogle Scholar
  51. 51.
    Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003;423(6938):409-14.PubMedGoogle Scholar
  52. 52.
    Howe LR, Brown AM. Wnt Signaling and Breast Cancer. Cancer Biol Ther 2004;3(1).Google Scholar
  53. 53.
    Hatsell S, Rowlands T, Hiremath M, Cowin P. Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia 2003;8(2):145-58.PubMedGoogle Scholar
  54. 54.
    Smalley MJ, Dale TC. Wnt signaling and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2001;6(1):37-52.PubMedGoogle Scholar
  55. 55.
    Lacher MD, Siegenthaler A, Jager R, Yan X, Hett S, Xuan L, et al. Role of DDC-4/sFRP-4, a secreted frizzled-related protein, at the onset of apoptosis in mammary involution. Cell Death Differ 2003;10(5):528-38.PubMedGoogle Scholar
  56. 56.
    Cunha GR, Hom YK, Young P, Brody J. Transplantation and tissue recombination techniques to study mammary gland biology. In: Ip MM, Asch BB, editors. Methods in Mammary Gland Biology and Breast Cancer Research. New York: Kluwer Academic / Plenum; 2000. p. 289-306.Google Scholar
  57. 57.
    van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 1994;8(22):2691-703.PubMedGoogle Scholar
  58. 58.
    Foley J, Dann P, Hong J, Cosgrove J, Dreyer B, Rimm D, et al. Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development 2001;128(4):513-25.PubMedGoogle Scholar
  59. 59.
    DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 1999;126(20):4557-68.PubMedGoogle Scholar
  60. 60.
    Christiansen JH, Dennis CL, Wicking CA, Monkley SJ, Wilkinson DG, Wainwright BJ. Murine Wnt-11 and Wnt-12 have temporally and spatially restricted expression patterns during embryonic development. Mech Dev 1995;51(2-3):341-50.PubMedGoogle Scholar
  61. 61.
    Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002;2(5):643-53.PubMedGoogle Scholar
  62. 62.
    Bafico A, LiuG, Yaniv A, Gazit A, Aaronson SA. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 2001;3(7): 683-6.PubMedGoogle Scholar
  63. 63.
    MaoB, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, et al. LDLreceptor-related protein 6 is a receptor for Dickkopf proteins. Nature 2001;411(6835):321-5.PubMedGoogle Scholar
  64. 64.
    Willert J, Epping M, Pollack JR, Brown PO, Nusse R. A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2002;2(1):8.PubMedGoogle Scholar
  65. 65.
    Phippard DJ, Weber-Hall SJ, Sharpe PT, Naylor MS, Jayatalake H, Maas R, et al. Regulation of Msx-1, Msx-2,Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development 1996;122(9):2729-37.PubMedGoogle Scholar
  66. 66.
    Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000;24(4):391-5.PubMedGoogle Scholar
  67. 67.
    Daniel CW, Silberstein GB. Postnatal development of the rodent mammary gland. In: Neville MC, Daniel CW, editors. The Mammary Gland. New York: Plenum Press; 1987. p. 3-36.Google Scholar
  68. 68.
    Smalley M, Ashworth A. Stem cells and breast cancer:Afield in transit. Nat Rev Cancer 2003;3(11):832-44.PubMedGoogle Scholar
  69. 69.
    Bergstein I, Brown AMC. WNT genes and breast cancer. In: Bowcock AM, editor. Breast Cancer: Molecular Genetics, Pathogenesis and Therapeutics: Humana Press Inc.; 1999. p. 181-98.Google Scholar
  70. 70.
    Lane TF, Leder P. Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 1997;15:2133-2144.PubMedGoogle Scholar
  71. 71.
    Buhler TA, Dale TC, Kieback C, Humphreys RC, Rosen JM. Localization and quantification of Wnt-2 gene expression in mouse mammary development. Devl.Biol. 1993;155:87-96.Google Scholar
  72. 72.
    Lin TP, Guzman RC, Osborn RC, Thordarson G, Nandi S. Role of endocrine, autocrine, and paracrine interactions in the development of mammary hyperplasia in Wnt-1 transgenic mice. Cancer Res. 1992;52:413-419.PubMedGoogle Scholar
  73. 73.
    Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988;55:619-625.PubMedGoogle Scholar
  74. 74.
    Bocchinfuso WP, Hively WP, Couse JF, Varmus HE, Korach KS. A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland hyperplasia and tumorigenesis in mice lacking estrogen receptor-alpha. Cancer Res 1999;59(8): 1869-76.PubMedGoogle Scholar
  75. 75.
    Gallagher RC, Hay T, Meniel V, Naughton C, Anderson TJ, Shibata H, et al. Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 2002;21(42):6446-57.PubMedGoogle Scholar
  76. 76.
    Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 2002;1(3):279-88.PubMedGoogle Scholar
  77. 77.
    Gavin BJ, McMahon AP. Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol. Cell. Biol. 1992;12:2418-2423.PubMedGoogle Scholar
  78. 78.
    Weber-Hall SJ, Phippard DJ, Niemeyer CC, Dale TC. Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 1994;57(3): 205-14.PubMedGoogle Scholar
  79. 79.
    Bradbury JM, Edwards PAW, Niemeyer CC, Dale TC. Wnt-4 expression induces a pregnancy-like growth pattern in reconstructed mammary glands in virgin mice. Devl. Biol. 1995;170:553-563.Google Scholar
  80. 80.
    Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 2000;14(6):650-4.PubMedGoogle Scholar
  81. 81.
    Shimizu H, Julius MA, Zheng Z, Giarre M, Brown AMC, Kitajewski J. Mammary cell transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell growth and differentiation 1997;8:1349-1358.PubMedGoogle Scholar
  82. 82.
    Uyttendaele H, Soriano JV, Montesano R, Kitajewski J. Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol 1998;196(2):204-17.PubMedGoogle Scholar
  83. 83.
    Miyoshi K, Shillingford JM, Le Provost F, Gounari F, Bronson R, von Boehmer H, et al. Activation of beta-catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proc Natl Acad Sci U S A 2002;99(1):219-24.PubMedGoogle Scholar
  84. 84.
    Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P. Delta-N89beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol 2001:in press.Google Scholar
  85. 85.
    Michaelson JS, Leder P. beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 2001;20(37):5093-9.PubMedGoogle Scholar
  86. 86.
    Hsu W, Shakya R, Costantini F. Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J Cell Biol 2001;155(6):1055-64.PubMedGoogle Scholar
  87. 87.
    Tepera SB, McCrea PD, Rosen JM. A beta-catenin survival signal is required for normal lobular development in the mammary gland. J Cell Sci 2003;116(Pt 6):1137-49.PubMedGoogle Scholar
  88. 88.
    Martinez Arias A, Brown AMC, Brennan K. Wnt signalling: pathway or network? Curr Opin Genet Dev 1999;9(4):447-54.PubMedGoogle Scholar
  89. 89.
    Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982;31:99-109.PubMedGoogle Scholar
  90. 90.
    LiY, Hively WP, Varmus HE.Use ofMMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 2000;19(8):1002-9.PubMedGoogle Scholar
  91. 91.
    Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN. ApcMin, a mutation in the murine Apc gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc Natl Acad Sci U S A 1993;90(19):8977-81.PubMedGoogle Scholar
  92. 92.
    Gunther EJ, Moody SE, Belka GK, Hahn KT, Innocent N, Dugan KD, et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev 2003;17(4):488-501.PubMedGoogle Scholar
  93. 93.
    Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 1994;70(1):6-22.PubMedGoogle Scholar
  94. 94.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414(6859): 105-11.PubMedGoogle Scholar
  95. 95.
    Brown AMC. Wnt signaling in breast cancer: have we come full circle? Breast Cancer Res 2001;3(6):351-5.PubMedGoogle Scholar
  96. 96.
    Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, et al. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci U S A 2000;97(8):4262-6.PubMedGoogle Scholar
  97. 97.
    Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP. Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 2001;3(9):793-801.PubMedGoogle Scholar
  98. 98.
    Ugolini F, Charafe-Jauffret E, Bardou VJ, Geneix J, Adelaide J, Labat-Moleur F, et al.WNT pathway andmammarycarcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 2001;20(41):5810-7.PubMedGoogle Scholar
  99. 99.
    Wissmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M, et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol 2003;201(2):204-12.PubMedGoogle Scholar
  100. 100.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100(7): 3983-8.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of ManchesterManchesterUnited Kingdom
  2. 2.Department of Cell and Developmental BiologyWeill Medical College of Cornell University
  3. 3.Strang Cancer Prevention Center

Personalised recommendations