Journal of Mammary Gland Biology and Neoplasia

, Volume 8, Issue 4, pp 449–462 | Cite as

The Organization of Tight Junctions in Epithelia: Implications for Mammary Gland Biology and Breast Tumorigenesis

Article

Abstract

Tight junctions (TJs), the most apical components of the cell–cell junctional complexes, play a crucial role in the establishment and maintenance of cell polarity within tissues. In secretory glandular tissues, such as the mammary gland, TJs are crucial for separating apical and basolateral domains. TJs also create the variable barrier regulating paracellular movement of molecules through epithelial sheets, thereby maintaining tissue homeostasis. Recent advances reveal that TJs exist as macromolecular complexes comprised of several types of membrane proteins, cytoskeletal proteins, and signaling molecules. Many of these components are regulated during mammary gland development and pregnancy cycles, and several have received much attention as possible “tumor suppressors” during progression to breast cancer.

tight junctions barrier permeability fence polarity PDZ domain mammary gland 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. G. Farquhar and G. E. Palade (1963). Junctional complexes in various epithelia. J. Cell Biol. 17: 375–412.Google Scholar
  2. 2.
    E. E. Schneeberger and R. D. Lynch (1992). Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. 262: L647-L661.Google Scholar
  3. 3.
    S. Tsukita, M. Furuse, and M. Itoh (2001). Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2: 285–293.Google Scholar
  4. 4.
    B. M. Gumbiner (1993). Breaking through the tight junction barrier. J. Cell Biol. 123: 1631–1633.Google Scholar
  5. 5.
    L. A. Staehelin (1973). Further observations on the fine structure of freeze-cleaved tight junctions. J. Cell Sci. 13: 763–786.Google Scholar
  6. 6.
    D. C. Baumgart and A. U. Dignass (2002). Intestinal barrier function. Curr. Opin. Clin. Nutr. Metab. Care 5: 685–694.Google Scholar
  7. 7.
    E. S. Barton, J. C. Forrest, J. L. Connolly, J. D. Chappell, Y. Liu, F. J. Schnell, A. Nusrat, C. A. Parkos, and T. S. Dermody (2001). Junction adhesion molecule is a receptor for reovirus. Cell 104: 441–451.Google Scholar
  8. 8.
    M. R. Amieva, R. Vogelmann, A. Covacci, L. S. Tompkins, W. J. Nelson, and S. Falkow (2003). Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300: 1430–1434.Google Scholar
  9. 9.
    J. M. Staddon and L. L. Rubin (1996). Cell adhesion, cell junctions and the blood-brain barrier. Curr. Opin. Neurobiol. 6: 622–627.Google Scholar
  10. 10.
    J. A. Holash, S. I. Harik, G. Perry, and P. A. Stewart (1993). Barrier properties of testis microvessels. Proc. Natl. Acad. Sci. U.S.A. 90: 11069–11073.Google Scholar
  11. 11.
    J. M. Scherrmann (2002). Drug delivery to brain via the blood-brain barrier. Vascul. Pharmacol. 38: 349–354.Google Scholar
  12. 12.
    K. R. Spring (1998). Routes and mechanism of fluid transport by epithelia. Annu. Rev. Physiol. 60: 105–119.Google Scholar
  13. 13.
    D. Bilder (2001). PDZ proteins and polarity: functions from the fly. Trends Genet. 17: 511–519.Google Scholar
  14. 14.
    U. Tepass, G. Tanentzapf, R. Ward, and R. Fehon (2001). Epithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet. 35: 747–784.Google Scholar
  15. 15.
    T. Nakamura, J. Blechman, S. Tada, T. Rozovskaia, T. Itoyama, F. Bullrich, A. Mazo, C. M. Croce, B. Geiger, and E. Canaani (2000). huASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions. Proc. Natl. Acad. Sci. U.S.A. 97: 7284–7289.Google Scholar
  16. 16.
    M. S. Balda and K. Matter (2000). The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO. J. 19: 2024–2033.Google Scholar
  17. 17.
    M. S. Balda, M. D. Garrett, and K. Matter (2003). The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J. Cell Biol. 160: 423–432.Google Scholar
  18. 18.
    M. Furuse, T. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura, and S. Tsukita (1993). Occludin: A novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123: 1777–1788.Google Scholar
  19. 19.
    V. Wong (1997). Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am. J. Physiol. 273: C1859-C1867.Google Scholar
  20. 20.
    M. Saitou, K. Fujimoto, Y. Doi, M. Itoh, T. Fujimoto, M. Furuse, H. Takano, T. Noda, and S. Tsukita (1998). Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol. 141: 397–408.Google Scholar
  21. 21.
    M. Furuse, K. Fujita, T. Hiiragi, K. Fujimoto, and S. Tsukita (1998). Claudin-1 and-2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141: 1539–1550.Google Scholar
  22. 22.
    M. Furuse, H. Sasaki, K. Fujimoto, and S. Tsukita (1998). A single gene product, claudin-1 or-2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143: 391–401.Google Scholar
  23. 23.
    Y. Kiuchi-Saishin, S. Gotoh, M. Furuse, A. Takasuga, Y. Tano, and S. Tsukita (2002). Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J. Am. Soc. Nephrol. 13: 875–886.Google Scholar
  24. 24.
    D. B. Simon, Y. Lu, K. A. Choate, H. Velazquez, E. Al-Sabban, M. Praga, G. Casari, A. Bettinelli, G. Colussi, J. Rodriguez-Soriano, D. McCredie, D. Milford, S. Sanjad, and R. P. Lifton (1999). Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285: 103–106.Google Scholar
  25. 25.
    E. R. Wilcox, Q. L. Burton, S. Naz, S. Riazuddin, T. N. Smith, B. Ploplis, I. Belyantseva, T. Ben-Yosef, N. A. Liburd, R. J. Morell, B. Kachar, D. K. Wu, A. J. Griffith, and T. B. Friedman (2001). Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104: 165–172.Google Scholar
  26. 26.
    K. Morita, H. Sasaki, M. Furuse, and S. Tsukita (1999). Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. 147: 185–194.Google Scholar
  27. 27.
    T. Nitta, M. Hata, S. Gotoh, Y. Seo, H. Sasaki, N. Hashimoto, M. Furuse, and S. Tsukita (2003). Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 161: 653–660.Google Scholar
  28. 28.
    A. Gow, C. M. Southwood, J. S. Li, M. Pariali, G. P. Riordan, S. E. Brodie, J. Danias, J. M. Bronstein, B. Kachar, and R. A. Lazzarini (1999). CNS myelin and Sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99: 649–659.Google Scholar
  29. 29.
    M. Furuse, M. Hata, K. Furuse, Y. Yoshida, A. Haratake, Y. Sugitani, T. Noda, A. Kubo, and S. Tsukita (2002). Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice. J. Cell Biol. 156: 1099–1111.Google Scholar
  30. 30.
    J. M. Diamond (1978). Channels in epithelial cell membranes and junctions. Fed. Proc. 37: 2639–2643.Google Scholar
  31. 31.
    I. Martin-Padura, S. Lostaglio, M. Schneemann, L. Williams, M. Romano, P. Fruscella, C. Panzeri, A. Stoppacciaro, L. Ruco, A. Villa, D. Simmons, and E. Dejana (1998). Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142: 117–127.Google Scholar
  32. 32.
    M. Itoh, H. Sasaki, M. Furuse, H. Ozaki, T. Kita, and S. Tsukita (2001). Junctional adhesion molecule (JAM) binds to PAR-3: A possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol. 154: 491–497.Google Scholar
  33. 33.
    K. Ebnet, A. Suzuki, Y. Horikoshi, T. Hirose, Z. Meyer, M. K. Brickwedde, S. Ohno, and D. Vestweber (2001). The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO. J. 20: 3738–3748.Google Scholar
  34. 34.
    A. Suzuki, C. Ishiyama, K. Hashiba, M. Shimizu, K. Ebnet, and S. Ohno (2002). aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J. Cell Sci. 115: 3565–3573.Google Scholar
  35. 35.
    L. B. Spiryda and D. R. Colman (1998). Protein zero, a myelin IgCAM, induces physiologically operative tight junctions in nonadhesive carcinoma cells. J. Neurosci. Res. 54: 282–288.Google Scholar
  36. 36.
    S. K. Tiwari-Woodruff, A. G. Buznikov, T. Q. Vu, P. E. Micevych, K. Chen, H. I. Kornblum, and J. M. Bronstein (2001). OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J. Cell Biol. 153: 295–305.Google Scholar
  37. 37.
    C. J. Cohen, J. T. Shieh, R. J. Pickles, T. Okegawa, J. T. Hsieh, and J. M. Bergelson (2001). The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. U.S.A. 98: 15191–15196.Google Scholar
  38. 38.
    B. R. Stevenson, J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough (1986). Identification of ZO-1: A high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103: 755–766.Google Scholar
  39. 39.
    B. Gumbiner, T. Lowenkopf, and D. Apatira (1991). Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc. Natl. Acad. Sci. U.S.A. 88: 3460–3464.Google Scholar
  40. 40.
    L. A. Jesaitis and D. A. Goodenough (1994). Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J. Cell Biol. 124: 949–961.Google Scholar
  41. 41.
    J. Haskins, L. Gu, E. S. Wittchen, J. Hibbard, and B. R. Stevenson (1998). ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell Biol. 141: 199–208.Google Scholar
  42. 42.
    M. Itoh, A. Nagafuchi, S. Yonemura, T. Kitani-Yasuda, and S. Tsukita (1993). The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J. Cell Biol. 121: 491–502.Google Scholar
  43. 43.
    E. Willott, M. S. Balda, A. S. Fanning, B. Jameson, C. Van Itallie, and J. M. Anderson (1993). The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc. Natl. Acad. Sci. U.S.A. 90: 7834–7838.Google Scholar
  44. 44.
    M. B. Kennedy (1995). Origin of PDZ (DHR, GLGF) domains. Trends Biochem. Sci. 20: 350.Google Scholar
  45. 45.
    M. Sheng and C. Sala (2001). PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24: 1–29.Google Scholar
  46. 46.
    Z. Songyang, A. S. Fanning, C. Fu, J. Xu, S. M. Marfatia, A. H. Chishti, A. Crompton, A. C. Chan, J. M. Anderson, and L. C. Cantley (1997). Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275: 73–77.Google Scholar
  47. 47.
    M. Itoh, M. Furuse, K. Morita, K. Kubota, M. Saitou, and S. Tsukita (1999). Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J. Cell Biol. 147: 1351–1363.Google Scholar
  48. 48.
    M. Furuse, M. Itoh, T. Hirase, A. Nagafuchi, S. Yonemura, and S. Tsukita (1994). Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J. Cell Biol. 127: 1617–1626.Google Scholar
  49. 49.
    A. S. Fanning, B. J. Jameson, L. A. Jesaitis, and J. M. Anderson (1998). The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273: 29745–29753.Google Scholar
  50. 50.
    M. Itoh, K. Morita, and S. Tsukita (1999). Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J. Biol. Chem. 274: 5981–5986.Google Scholar
  51. 51.
    M. Itoh, A. Nagafuchi, S. Moroi, and S. Tsukita (1997). Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J. Cell Biol. 138: 181–192.Google Scholar
  52. 52.
    E. S. Wittchen, J. Haskins, and B. R. Stevenson (2000). Exogenous expression of the amino-terminal half of the tight junction protein ZO-3 perturbs junctional complex assembly. J. Cell Biol. 151: 825–836.Google Scholar
  53. 53.
    B. Etemad-Moghadam, S. Guo, and K. J. Kemphues (1995). Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83: 743–752.Google Scholar
  54. 54.
    K. Kemphues (2000). PARsing embryonic polarity. Cell 101: 345–348.Google Scholar
  55. 55.
    C. Q. Doe (2001). Cell polarity: The PARty expands. Nat. Cell Biol. 3: E7-E9.Google Scholar
  56. 56.
    Y. Izumi, T. Hirose, Y. Tamai, S. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K. J. Kemphues, and S. Ohno (1998). An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143: 95–106.Google Scholar
  57. 57.
    R. G. Qiu, A. Abo, and G. Steven Martin (2000). A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation. Curr. Biol. 10: 697–707.Google Scholar
  58. 58.
    G. Joberty, C. Petersen, L. Gao, and I. G. Macara (2000). The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol. 2: 531–539.Google Scholar
  59. 59.
    Y. Hamazaki, M. Itoh, H. Sasaki, M. Furuse, and S. Tsukita (2002). Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J. Biol. Chem. 277: 455–461.Google Scholar
  60. 60.
    M. H. Roh, O. Makarova, C. J. Liu, K. Shin, S. Lee, S. Laurinec, M. Goyal, R. Wiggins, and B. Margolis (2002). The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J. Cell Biol. 157: 161–172.Google Scholar
  61. 61.
    X. Wu, K. Hepner, S. Castelino-Prabhu, D. Do, M. B. Kaye, X. J. Yuan, J. Wood, C. Ross, C. L. Sawyers, and Y. E. Whang (2000). Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc. Natl. Acad. Sci. U.S.A. 97: 4233–4238.Google Scholar
  62. 62.
    Y. Wu, D. Dowbenko, S. Spencer, R. Laura, J. Lee, Q. Gu, and L. A. Lasky (2000). Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J. Biol. Chem. 275: 21477–21485.Google Scholar
  63. 63.
    N. Ide, Y. Hata, H. Nishioka, K. Hirao, I. Yao, M. Deguchi, A. Mizoguchi, H. Nishimori, T. Tokino, Y. Nakamura, and Y. Takai (1999). Localization of membrane-associated guanylate kinase (MAGI)-1/BAI-associated protein (BAP) 1 at tight junctions of epithelial cells. Oncogene 18: 7810–7815.Google Scholar
  64. 64.
    S. Citi, H. Sabanay, R. Jakes, B. Geiger, and J. Kendrick-Jones (1988). Cingulin, a new peripheral component of tight junctions. Nature 333: 272–276.Google Scholar
  65. 65.
    Y. Zhong, T. Saitoh, T. Minase, N. Sawada, K. Enomoto, and M. Mori (1993). Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J. Cell Biol. 120: 477–483.Google Scholar
  66. 66.
    B. H. Keon, S. Schafer, C. Kuhn, C. Grund, and W. W. Franke (1996). Symplekin, a novel type of tight junction plaque protein. J. Cell Biol. 134: 1003–1018.Google Scholar
  67. 67.
    E. Weber, G. Berta, A. Tousson, St. P. John, and M. W. Green, U. Gopalokrishnan, T. Jilling, E. J. Sorscher, T. S. Elton, and D. R. Abrahamson (1994). Expression and polarized targeting of a rab3 isoform in epithelial cells. J. Cell Biol. 125: 583–594.Google Scholar
  68. 68.
    M. Nishimura, M. Kakizaki, Y. Ono, K. Morimoto, M. Takeuchi, Y. Inoue, T. Imai, and Y. Takai (2002). JEAP, a novel component of tight junctions in exocrine cells. J. Biol. Chem. 277: 5583–5587.Google Scholar
  69. 69.
    H. Kawabe, H. Nakanishi, M. Asada, A. Fukuhara, K. Morimoto, M. Takeuchi, Y. Takai (2001). Pilt, a novel peripheral membrane protein at tight junctions in epithelial cells. J. Biol. Chem. 276: 48350–48355.Google Scholar
  70. 70.
    A. Suzuki, T. Yamanaka, T. Hirose, N. Manabe, K. Mizuno, M. Shimizu, K. Akimoto, Y. Izumi, T. Ohnishi, and S. Ohno (2001). Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J. Cell Biol. 152: 1183–1196.Google Scholar
  71. 71.
    B. M. Denker, C. Saha, S. Khawaja, and S. K. Nigam (1996). Involvement of a heterotrimeric G protein alpha subunit in tight junction biogenesis. J. Biol. Chem. 271: 25750–25753.Google Scholar
  72. 72.
    C. Klingler, U. Kniesel, S. D. Bamforth, H. Wolburg, B. Engelhardt, and W. Risau (2000). Disruption of epithelial tight junctions is prevented by cyclic nucleotide-dependent protein kinase inhibitors. Histochem. Cell Biol. 113: 349–361.Google Scholar
  73. 73.
    J. M. Mullin, K. V. Laughlin, N. Ginanni, C. W. Marano, H. M. Clarke, and A. Peralta Soler (2000). Increased tight junction permeability can result from protein kinase C activation/translocation and act as a tumor promotional event in epithelial cancers. Ann. N.Y. Acad. Sci. 915: 231–236.Google Scholar
  74. 74.
    G. Morgan and F. B. Wooding (1982). A freeze-fracture study of tight junction structure in sheep mammary gland epithelium during pregnancy and lactation. J. Dairy Res. 49: 1–11.Google Scholar
  75. 75.
    K. Stelwagen, D. C. van Espen, G. A. Verkerk, H. A. McFadden, and V. C. Farr (1998). Elevated plasma cortisol reduces permeability of mammary tight junctions in the lactating bovine mammary epithelium. J. Endocrinol. 159: 173–178.Google Scholar
  76. 76.
    D. A. Nguyen and M. C. Neville (1998). Tight junction regulation in the mammary gland. J. Mam. Gland Biol. Neoplasia 3: 233–246.Google Scholar
  77. 77.
    D. A. Nguyen, A. F. Parlow, and M. C. Neville (2001). Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J. Endocrinol. 170: 347–356.Google Scholar
  78. 78.
    N. M. Rubenstein, Y. Guan, P. L. Woo, and G. L. Firestone (2003). Glucocorticoid down-regulation of RhoA is required for the steroid-induced organization of the junctional complex and tight junction formation in rat mammary epithelial tumor cells. J. Biol. Chem. 278: 10353–10360.Google Scholar
  79. 79.
    P. L. Woo, D. Ching, Y. Guan, and G. L. Firestone (1999). Requirement for Ras and phosphatidylinositol 3-kinase signaling uncouples the glucocorticoid-induced junctional organization and transepithelial electrical resistance in mammary tumor cells. J. Biol. Chem. 274: 32818–32828.Google Scholar
  80. 80.
    K. L. Singer, B. R. Stevenson, P. L. Woo, and G. L. Firestone (1994). Relationship of serine/threonine phosphorylation/dephosphorylation signaling to glucocorticoid regulation of tight junction permeability and ZO-1 distribution in nontransformed mammary epithelial cells. J. Biol. Chem. 269: 16108–16115.Google Scholar
  81. 81.
    K. Stelwagen, H. A. McFadden, and J. Demmer (1999). Prolactin, alone or in combination with glucocorticoids, enhances tight junction formation and expression of the tight junction protein occludin in mammary cells. Mol. Cell Endocrinol. 156: 55–61.Google Scholar
  82. 82.
    M. Mareel and A. Leroy (2003). Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev. 83: 337–376.Google Scholar
  83. 83.
    W. Birchmeier (1995). E-cadherin as a tumor (invasion) suppressor gene. Bioessays 17: 97–99.Google Scholar
  84. 84.
    K. B. Hoover, S. Y. Liao, and P. J. Bryant (1998). Loss of the tight junction MAGUK ZO-1 in breast cancer: Relationship to glandular differentiation and loss of heterozygosity. Am. J. Pathol. 153: 1767–1773.Google Scholar
  85. 85.
    L. Mauro, M. Bartucci, C. Morelli, S. Ando, and E. Surmacz (2001). IGF-I receptor-induced cell-cell adhesion of MCF-7 breast cancer cells requires the expression of junction protein ZO-1. J. Biol. Chem. 276: 39892–39897.Google Scholar
  86. 86.
    A. Chlenski, K. V. Ketels, G. I. Korovaitseva, M. S. Talamonti, R. Oyasu, D. G. Scarpelli (2000). Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues. Biochim. Biophys. Acta. 1493: 319–324.Google Scholar
  87. 87.
    B. A. Glaunsinger, R. S. Weiss, S. S. Lee, and R. Javier (2001). Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J. 20: 5578–5586.Google Scholar
  88. 88.
    S. L. Kominsky, P. Argani, D. Korz, E. Evron, V. Raman, E. Garrett, A. Rein, G. Sauter, O. P. Kallioniemi, and S. Sukumar (2003). Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22: 2021–2033.Google Scholar
  89. 89.
    T. Hoevel, R. Macek, O. Mundigl, K. Swisshelm, and M. Kubbies (2002). Expression and targeting of the tight junction protein CLDN1 in CLDN1-negative human breast tumor cells. J. Cell Physiol. 191: 60–68.Google Scholar
  90. 90.
    K. Swisshelm, A. Machl, S. Planitzer, R. Robertson, M. Kubbies, and S. Hosier (1999). SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily. Gene 226: 285–295.Google Scholar
  91. 91.
    L. B. Rangel, R. Agarwal, T. D'Souza, E. S. Pizer, P. L. Alo, W. D. Lancaster, L. Gregoire, D. R. Schwartz, K. R. Cho, and P. J. Morin (2003). Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin. Cancer Res. 9: 2567–2575.Google Scholar
  92. 92.
    C. D. Hough, C. A. Sherman-Baust, E. S. Pizer, F. J. Montz, D. D. Im, N. B. Rosenshein, K. R. Cho, G. J. Riggins, and P. J. Morin (2000). Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res. 60: 6281–6287.Google Scholar
  93. 93.
    N. Miwa, M. Furuse, S. Tsukita, N. Niikawa, Y. Nakamura, Y. Furukawa (2000). Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol. Res. 12: 469–476.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Life Sciences DivisionLawrence Berkeley National LaboratoryBerkeley

Personalised recommendations